Все статьи » ЗФТШ Физика

Статьи

  • 6. Примеры решения задач
    Задача 1

    В электрический чайник налили холодную воду при температуре  `t_1 = 10^@ "C"`. Через время `tau =10` мин после включения чайника вода закипела. Через какое время она полностью испарится? Потерями теплоты пренебречь. Удельная теплоёмкость воды `c_(sf"в") = 4200  sf"Дж"//(sf"кг" * sf"К")`, удельная теплота парообразования воды `L_(sf"в") =2,26 *10^6  sf"Дж"//sf"кг"`.

    Решение

    Для испарения воды массой `m` при температуре кипения необходимо количество теплоты `Q_1 =mL_(sf"в")`, где `L_(sf"в")` - удельная теплота парообразования воды.

    Пусть воде от нагревателя чайника в единицу времени поступает количество теплоты `q`, а `tau_1` - время, необходимое для испарения всей воды, нагретой до температуры кипения. Тогда справедливо соотношение

    `Q_1 = mL_(sf"в") =q tau_1`.

    Количество теплоты `Q_2`, поступившее от нагревателя за время `tau` и нагревшее воду от начальной температуры  `t_1 = 10^@ "C"` до температуры кипения `t_2 =100^@ "C"`, равно

    `Q_2 = q tau = c_(sf"в")m (t_2 - t_1)`,

    где `c_(sf"в")` - удельная теплоёмкость воды. Отсюда для массы воды получаем

    `m= (q tau)/(c_(sf"в") (t_2 - t_1))`.

    Подставляя это выражение в соотношение для `Q_1`, имеем

    `q*tau_1 = (L_(sf"в")q tau)/(c_(sf"в") (t_2 - t_1))`.

    Отсюда для времени испарения воды получаем

    τ1=Lв·τcв·t2-t1=2,26·106 Дж/кг·600 с 4,2·103 Дж/(кг·К)·90 К1 час.\tau_1=\dfrac{L_\mathrm в\cdot\tau}{c_\mathrm в\cdot\left(t_2-t_1\right)}=\dfrac{2,26\cdot10^6\;\mathrm{Дж}/\mathrm{кг}\cdot600\;\mathrm с\;}{4,2\cdot10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot90\;\mathrm К}\approx1\;\mathrm{час}.

    Задача 2

    Найдите расход бензина автомобиля (в литрах) на `L = 100` км пути при скорости `v=90` км/ч. Мощность двигателя автомобиля `P=30` кВт, коэффициент полезного действия `eta =25%`.

    Решение

    Количество теплоты `Q`, которое выделяется при сгорании бензина объёмом `V`, зависит от удельной теплоты сгорания `q` данного вида топлива (для бензина `q=46 sf"МДж"//sf"кг"`)  и массы `m` сгоревшего топлива. С учётом того, что `m=rho V` (для бензина `rho = 700  sf"кг"//sf"м"^3`), получаем

    `Q=qm=q rho V`.

    Часть энергии, выделяемой при сгорании бензина, используется для создания полезной мощности `P`. Если двигатель, развивая постоянную мощность `P`, проработал в течение времени `tau`, то совершённая им работа `A` равна `P tau`. Эффективность преобразования теплоты `Q` сгорания топлива в механическую работу `A` двигателя характеризуется коэффициентом полезного действия (КПД) двигателя `eta`

    `eta=A/Q * 100% = (P tau)/Q *100% = (P tau)/(q rho V) * 100%`.

    Время работы двигателя `tau = L//v`. Из полученных соотношений для величины расхода бензина находим

    `V = (100%)/(eta) * (P*L)/(q*rho *v) ~~(100%)/(25%) * (30*10^3  sf"Дж"//sf"c" * 10^5 sf"м")/(46 * 10^6 sf"Дж"//sf"кг" * 700 sf"кг"//sf"м"^3 * 25 sf"м"//sf"с") ~~14,9 sf"л"`.

    Следовательно, расход бензина для автомобиля с указанными характеристиками составляет примерно `15` литров на `100` км пути.

    Задача 3

    При выстреле из ружья стальная дробь массой `m=45` г вылетает со скоростью `v=600` м/с. Считая, что `80%` энергии, высвободившейся при сгорании порохового заряда массой `M=9` г, переходит в кинетическую энергию пули и её внутреннюю энергию, определите, на сколько градусов повысилась температура пули. Удельная теплота сгорания пороха `q=3 sf"МДж"//sf"кг"`, удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж" //(sf"кг" * sf"К")`.

    Решение

    При сгорании пороха массой `M` выделяется энергия (теплота) `Q=qM`, где `q` -удельная теплота сгорания пороха. По условию задачи `80%` этой энергии переходит в кинетическую энергию `K` дроби и её внутреннюю энергию. Следовательно, внутренняя энергия дроби изменяется, и пусть `Delta U` - величина этого изменения. Тогда справедливо следующее соотношение

    `0,8 Q=K+Delta U`.

    Перепишем его, учитывая выражения для кинетической энергии дроби `K=mv^2 //2` и изменения внутренней энергии `Delta U = c_(sf"ст") mDelta t`, где `Delta t` - изменение температуры дроби (искомая величина). Получаем

    `0,8 qM=(mv^2)/(2) +c_sf"ст" mDelta t`.

    Отсюда для изменения температуры находим

    `Delta t= (1,6 qM - mv^2)/(2 c_(sf"ст") m) = 600 sf"К"`.

    Задача 4

    Как велика масса стальной детали, нагретой предварительно до `500^@ "C"`, если при опускании её в калориметр, содержащий `18,6` л воды при температуре `13^@ "C"`, последняя нагрелась до `35^@ "C"`. Теплоёмкостью калориметра и потерями теплоты на испарение воды пренебречь. Удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж"//(sf"кг" * sf"К")`.

    Решение

    Во время рассматриваемого теплового процесса стальная деталь массой `M_(sf"ст")` охлаждается от температуры `t_1 =500^@ "C"` до температуры `t=35^@ "C"`, отдавая при этом количество теплоты `Q_(sf"ст")`:

    `Q_(sf"ст") = c_(sf"ст") M_(sf"ст") (t_1 -t)`.

    За это же время вода массой `M_sf"в" =18,6` кг нагревается от температуры `t_2 =13^@ "C"` до температуры `t=35^@ "C"`, получив при этом количество теплоты `Q_(sf"в")`:

    `Q_sf"в" = c_sf"в" M_sf"в" (t-t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    Qотд=Qст=cстMстt1-t=Qпол=Qв=cвMвt-t2Q_\mathrm{отд}=Q_\mathrm{ст}=c_\mathrm{ст}M_\mathrm{ст}\left(t_1-t\right)=Q_\mathrm{пол}=Q_\mathrm в=c_\mathrm вM_\mathrm в\left(t-t_2\right).

    Здесь учтено, что по условию задачи испарением воды можно пренебречь, т. е. теплота, выделяемая при охлаждении стальной детали, идёт только на нагревание воды.

    Из последнего соотношения для массы стальной детали получаем

    Mст=свMвt-t2cстt1-t=4200 Дж/(кг·К)·18,6 кг·35°C-13°C500 Дж/(кг·К)·500°C-35°C7,4 кгM_\mathrm{ст}=\dfrac{с_\mathrm вM_\mathrm в\left(t-t_2\right)}{c_\mathrm{ст}\left(t_1-t\right)}=\dfrac{4200\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot18,6\;\mathrm{кг}\cdot\left(35^\circ\mathrm C-13^\circ\mathrm C\right)}{500\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot\left(500^\circ\mathrm C-35^\circ\mathrm C\right)}\approx7,4\;\mathrm{кг}.

    Задача 5

    В калориметр, где в состоянии теплового равновесия находился мокрый снег (смесь льда и воды) массой `m=250` г, долили `M=1` кг воды при температуре `t_1 =20^@ "C"`. После того, как снег растаял, и установилось тепловое равновесие, в калориметре оказалась вода при температуре `t_2 =5^@ "C"`. Сколько воды содержалось в снегу? Потерями теплоты и теплоёмкостью калориметра пренебречь.

    Решение

    Конечное агрегатное состояние системы по условию задачи - вода. Мокрый снег (смесь льда и воды при температуре `t_0 =0^@ "C"`) получает теплоту от находящейся в калориметре воды.

    Часть теплоты, подведённой мокрому снегу, идёт на плавление находящегося в снегу льда (пусть масса льда `m_(sf"л")`). Для плавления льда при температуре плавления необходимо количество теплоты `Q_sf"пол,1"`:

    `Q_(sf"пол,1") = m_sf"л" lambda_sf"л"`.

    На нагревание получившейся из мокрого снега воды массой `m=250` г от температуры `t_0 = 0^@ "C"` до температуры `t_2 = 5^@ "C"` требуется количество теплоты `Q_sf"пол,2"`

    `Q_sf"пол,2" = c_sf"в" m (t_2 - t_0)`.

    Таким образом, суммарное количество теплоты `Q_sf"пол"`, получаемое мокрым снегом, а затем водой, равно

    `Q_sf"пол"=Q_sf"пол,1" + Q_sf"пол,2"=m_(sf"л") lambda_(sf"л") + c_(sf"в") m (t_2 - t_0)`.

    Вода, первоначально находившаяся в калориметре, охлаждается от температуры `t_1 = 20^@ "C"` до температуры `t_2 =5^@ "C"`, отдавая при этом количество теплоты `Q_sf"отд"`

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)=Q_sf"пол" = m_sf"л" lambda_sf"л" + c_sf"в" m (t_2 - t_0)`.

    Отсюда для массы  льда, находившегося в мокром снегу, получаем

    `m_sf"л" = (Mc_sf"в" (t_1 - t_2) - mc_sf"в" (t_2 - t_0))/(lambda_sf"л") ~~170 sf"г"`.

    Масса же воды, содержавшейся в мокром снегу, равна `78` г.

    Пример 6

    В холодную воду, взятую в количестве `12` кг, впускают `1` кг водяного пара при температуре `t_sf"п" = 100^@ "C"`. Температура воды после конденсации в ней пара поднялась до `t=70^@ "C"`. Какова была первоначальная температура воды? Потерями теплоты пренебречь.

    Решение

    Попав в холодную воду, пар массой `m_sf"п" = 1` кг конденсируется, выделяя количество теплоты `Q_1 = m_sf"п"L_sf"в"`. Здесь `L_sf"в"` - удельная теплота конденсации водяного пара. Получившаяся при конденсации пара вода охлаждается от температуры  `t_sf"п" =100^@ "C"` до `t=70^@ "C"`, отдавая холодной воде количество теплоты `Q_2 = c_sf"в" * m_sf"п" * (t_sf"п" - t)`.

    Для нагревания холодной воды массы `m_sf"в" =12` кг от начальной температуры `t_sf"в"` до температуры `t=70^@ "C"` требуется количество теплоты `Q_3 = c_sf"в" * m_sf"в" * (t-t_sf"в")`.

    Составим уравнение теплового баланса для рассматриваемого теплового процесса:

    `Q_sf"отд" = Q_1 + Q_2 = L_sf"в" m_sf"п" + c_sf"в" m_sf"п" (t_sf"п" - t) = Q_sf"пол" = Q_3 = c_sf"в" m_sf"в" (t-t_sf"в")`.

    Решая полученное уравнение, для начальной температуры воды находим:

    `t_sf"в" = t- (L_sf"в" m_sf"п") / (c_sf"в" m_sf"в")  -   (m_sf"п")/(m_sf"в") * (t_sf"п" - t) = 23^@ "C"`.

  • 5. Количество теплоты. Теплоёмкость

    Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

    Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

    Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

    Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль. Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ "C"`. Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

    Количество теплоты, необходимое для нагревания тела на `1^@ "C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то                         

    `C = (DeltaQ)/(Deltat)`.  (1.1)

    Опыт показывает, что при обычных температурах `(200-500 sf"К")` теплоёмкость большинства твёрдых и жидких тел почти не зависит от температуры. Для большинства расчётов будем принимать, что теплоёмкость какого-нибудь вещества есть величина постоянная.

    Кроме теплоёмкости тела `C` вводят ещё удельную теплоёмкость `c` - теплоёмкость единицы массы вещества. Именно эта величина обычно приводится в справочниках физических величин. Удельная теплоёмкость `c` связана с теплоёмкостью тела `C` и массой `m` тела соотношением:

    `C = c*m`. (1.2)

    Приведённые формулы позволяют рассчитать, какое количество теплоты `Q` надо передать телу массы `m`, чтобы повысить его температуру от значения `t_1` до значения `t_2`:

    `Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1 )`. (1.3)

    Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

    Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

    Теплоизолирующей является оболочка калориметра – прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

    Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса:

    `Q_(sf"пол") = Q_(sf"отд")` (1.4)

    В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

    Плавление – процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

    Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы  `m` при температуре плавления в жидкое состояние, равно

    `Q_(sf"пл") = lambda * m`. (1.5)

    Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

    Процесс кристаллизации – это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

    Испарение – это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

    Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

    `Q_(sf"исп") =L*m`. (1.6)

    Конденсация – процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

    Кипение – процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).



  • 6. Примеры решения задач
    Задача 1

    В электрический чайник налили холодную воду при температуре  `t_1 = 10^@ "C"`. Через время `tau =10` мин после включения чайника вода закипела. Через какое время она полностью испарится? Потерями теплоты пренебречь. Удельная теплоёмкость воды `c_(sf"в") = 4200  sf"Дж"//(sf"кг" * sf"К")`, удельная теплота парообразования воды `L_(sf"в") =2,26 *10^6  sf"Дж"//sf"кг"`.

    Решение

    Для испарения воды массой `m` при температуре кипения необходимо количество теплоты `Q_1 =mL_(sf"в")`, где `L_(sf"в")` - удельная теплота парообразования воды.

    Пусть воде от нагревателя чайника в единицу времени поступает количество теплоты `q`, а `tau_1` - время, необходимое для испарения всей воды, нагретой до температуры кипения. Тогда справедливо соотношение

    `Q_1 = mL_(sf"в") =q tau_1`.

    Количество теплоты `Q_2`, поступившее от нагревателя за время `tau` и нагревшее воду от начальной температуры  `t_1 = 10^@ "C"` до температуры кипения `t_2 =100^@ "C"`, равно

    `Q_2 = q tau = c_(sf"в")m (t_2 - t_1)`,

    где `c_(sf"в")` - удельная теплоёмкость воды. Отсюда для массы воды получаем

    `m= (q tau)/(c_(sf"в") (t_2 - t_1))`.

    Подставляя это выражение в соотношение для `Q_1`, имеем

    `q*tau_1 = (L_(sf"в")q tau)/(c_(sf"в") (t_2 - t_1))`.

    Отсюда для времени испарения воды получаем

    τ1=Lв·τcв·t2-t1=2,26·106 Дж/кг·600 с 4,2·103 Дж/(кг·К)·90 К1 час.\tau_1=\dfrac{L_\mathrm в\cdot\tau}{c_\mathrm в\cdot\left(t_2-t_1\right)}=\dfrac{2,26\cdot10^6\;\mathrm{Дж}/\mathrm{кг}\cdot600\;\mathrm с\;}{4,2\cdot10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot90\;\mathrm К}\approx1\;\mathrm{час}.

    Задача 2

    Найдите расход бензина автомобиля (в литрах) на `L = 100` км пути при скорости `v=90` км/ч. Мощность двигателя автомобиля `P=30` кВт, коэффициент полезного действия `eta =25%`.

    Решение

    Количество теплоты `Q`, которое выделяется при сгорании бензина объёмом `V`, зависит от удельной теплоты сгорания `q` данного вида топлива (для бензина `q=46 sf"МДж"//sf"кг"`)  и массы `m` сгоревшего топлива. С учётом того, что `m=rho V` (для бензина `rho = 700  sf"кг"//sf"м"^3`), получаем

    `Q=qm=q rho V`.

    Часть энергии, выделяемой при сгорании бензина, используется для создания полезной мощности `P`. Если двигатель, развивая постоянную мощность `P`, проработал в течение времени `tau`, то совершённая им работа `A` равна `P tau`. Эффективность преобразования теплоты `Q` сгорания топлива в механическую работу `A` двигателя характеризуется коэффициентом полезного действия (КПД) двигателя `eta`

    `eta=A/Q * 100% = (P tau)/Q *100% = (P tau)/(q rho V) * 100%`.

    Время работы двигателя `tau = L//v`. Из полученных соотношений для величины расхода бензина находим

    `V = (100%)/(eta) * (P*L)/(q*rho *v) ~~(100%)/(25%) * (30*10^3  sf"Дж"//sf"c" * 10^5 sf"м")/(46 * 10^6 sf"Дж"//sf"кг" * 700 sf"кг"//sf"м"^3 * 25 sf"м"//sf"с") ~~14,9 sf"л"`.

    Следовательно, расход бензина для автомобиля с указанными характеристиками составляет примерно `15` литров на `100` км пути.

    Задача 3

    При выстреле из ружья стальная дробь массой `m=45` г вылетает со скоростью `v=600` м/с. Считая, что `80%` энергии, высвободившейся при сгорании порохового заряда массой `M=9` г, переходит в кинетическую энергию пули и её внутреннюю энергию, определите, на сколько градусов повысилась температура пули. Удельная теплота сгорания пороха `q=3 sf"МДж"//sf"кг"`, удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж" //(sf"кг" * sf"К")`.

    Решение

    При сгорании пороха массой `M` выделяется энергия (теплота) `Q=qM`, где `q` -удельная теплота сгорания пороха. По условию задачи `80%` этой энергии переходит в кинетическую энергию `K` дроби и её внутреннюю энергию. Следовательно, внутренняя энергия дроби изменяется, и пусть `Delta U` - величина этого изменения. Тогда справедливо следующее соотношение

    `0,8 Q=K+Delta U`.

    Перепишем его, учитывая выражения для кинетической энергии дроби `K=mv^2 //2` и изменения внутренней энергии `Delta U = c_(sf"ст") mDelta t`, где `Delta t` - изменение температуры дроби (искомая величина). Получаем

    `0,8 qM=(mv^2)/(2) +c_sf"ст" mDelta t`.

    Отсюда для изменения температуры находим

    `Delta t= (1,6 qM - mv^2)/(2 c_(sf"ст") m) = 600 sf"К"`.

    Задача 4

    Как велика масса стальной детали, нагретой предварительно до `500^@ "C"`, если при опускании её в калориметр, содержащий `18,6` л воды при температуре `13^@ "C"`, последняя нагрелась до `35^@ "C"`. Теплоёмкостью калориметра и потерями теплоты на испарение воды пренебречь. Удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж"//(sf"кг" * sf"К")`.

    Решение

    Во время рассматриваемого теплового процесса стальная деталь массой `M_(sf"ст")` охлаждается от температуры `t_1 =500^@ "C"` до температуры `t=35^@ "C"`, отдавая при этом количество теплоты `Q_(sf"ст")`:

    `Q_(sf"ст") = c_(sf"ст") M_(sf"ст") (t_1 -t)`.

    За это же время вода массой `M_sf"в" =18,6` кг нагревается от температуры `t_2 =13^@ "C"` до температуры `t=35^@ "C"`, получив при этом количество теплоты `Q_(sf"в")`:

    `Q_sf"в" = c_sf"в" M_sf"в" (t-t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    Qотд=Qст=cстMстt1-t=Qпол=Qв=cвMвt-t2Q_\mathrm{отд}=Q_\mathrm{ст}=c_\mathrm{ст}M_\mathrm{ст}\left(t_1-t\right)=Q_\mathrm{пол}=Q_\mathrm в=c_\mathrm вM_\mathrm в\left(t-t_2\right).

    Здесь учтено, что по условию задачи испарением воды можно пренебречь, т. е. теплота, выделяемая при охлаждении стальной детали, идёт только на нагревание воды.

    Из последнего соотношения для массы стальной детали получаем

    Mст=свMвt-t2cстt1-t=4200 Дж/(кг·К)·18,6 кг·35°C-13°C500 Дж/(кг·К)·500°C-35°C7,4 кгM_\mathrm{ст}=\dfrac{с_\mathrm вM_\mathrm в\left(t-t_2\right)}{c_\mathrm{ст}\left(t_1-t\right)}=\dfrac{4200\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot18,6\;\mathrm{кг}\cdot\left(35^\circ\mathrm C-13^\circ\mathrm C\right)}{500\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot\left(500^\circ\mathrm C-35^\circ\mathrm C\right)}\approx7,4\;\mathrm{кг}.

    Задача 5

    В калориметр, где в состоянии теплового равновесия находился мокрый снег (смесь льда и воды) массой `m=250` г, долили `M=1` кг воды при температуре `t_1 =20^@ "C"`. После того, как снег растаял, и установилось тепловое равновесие, в калориметре оказалась вода при температуре `t_2 =5^@ "C"`. Сколько воды содержалось в снегу? Потерями теплоты и теплоёмкостью калориметра пренебречь.

    Решение

    Конечное агрегатное состояние системы по условию задачи - вода. Мокрый снег (смесь льда и воды при температуре `t_0 =0^@ "C"`) получает теплоту от находящейся в калориметре воды.

    Часть теплоты, подведённой мокрому снегу, идёт на плавление находящегося в снегу льда (пусть масса льда `m_(sf"л")`). Для плавления льда при температуре плавления необходимо количество теплоты `Q_sf"пол,1"`:

    `Q_(sf"пол,1") = m_sf"л" lambda_sf"л"`.

    На нагревание получившейся из мокрого снега воды массой `m=250` г от температуры `t_0 = 0^@ "C"` до температуры `t_2 = 5^@ "C"` требуется количество теплоты `Q_sf"пол,2"`

    `Q_sf"пол,2" = c_sf"в" m (t_2 - t_0)`.

    Таким образом, суммарное количество теплоты `Q_sf"пол"`, получаемое мокрым снегом, а затем водой, равно

    `Q_sf"пол"=Q_sf"пол,1" + Q_sf"пол,2"=m_(sf"л") lambda_(sf"л") + c_(sf"в") m (t_2 - t_0)`.

    Вода, первоначально находившаяся в калориметре, охлаждается от температуры `t_1 = 20^@ "C"` до температуры `t_2 =5^@ "C"`, отдавая при этом количество теплоты `Q_sf"отд"`

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)=Q_sf"пол" = m_sf"л" lambda_sf"л" + c_sf"в" m (t_2 - t_0)`.

    Отсюда для массы  льда, находившегося в мокром снегу, получаем

    `m_sf"л" = (Mc_sf"в" (t_1 - t_2) - mc_sf"в" (t_2 - t_0))/(lambda_sf"л") ~~170 sf"г"`.

    Масса же воды, содержавшейся в мокром снегу, равна `78` г.

    Пример 6

    В холодную воду, взятую в количестве `12` кг, впускают `1` кг водяного пара при температуре `t_sf"п" = 100^@ "C"`. Температура воды после конденсации в ней пара поднялась до `t=70^@ "C"`. Какова была первоначальная температура воды? Потерями теплоты пренебречь.

    Решение

    Попав в холодную воду, пар массой `m_sf"п" = 1` кг конденсируется, выделяя количество теплоты `Q_1 = m_sf"п"L_sf"в"`. Здесь `L_sf"в"` - удельная теплота конденсации водяного пара. Получившаяся при конденсации пара вода охлаждается от температуры  `t_sf"п" =100^@ "C"` до `t=70^@ "C"`, отдавая холодной воде количество теплоты `Q_2 = c_sf"в" * m_sf"п" * (t_sf"п" - t)`.

    Для нагревания холодной воды массы `m_sf"в" =12` кг от начальной температуры `t_sf"в"` до температуры `t=70^@ "C"` требуется количество теплоты `Q_3 = c_sf"в" * m_sf"в" * (t-t_sf"в")`.

    Составим уравнение теплового баланса для рассматриваемого теплового процесса:

    `Q_sf"отд" = Q_1 + Q_2 = L_sf"в" m_sf"п" + c_sf"в" m_sf"п" (t_sf"п" - t) = Q_sf"пол" = Q_3 = c_sf"в" m_sf"в" (t-t_sf"в")`.

    Решая полученное уравнение, для начальной температуры воды находим:

    `t_sf"в" = t- (L_sf"в" m_sf"п") / (c_sf"в" m_sf"в")  -   (m_sf"п")/(m_sf"в") * (t_sf"п" - t) = 23^@ "C"`.

  • 5. Количество теплоты. Теплоёмкость

    Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

    Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

    Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

    Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль. Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ "C"`. Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

    Количество теплоты, необходимое для нагревания тела на `1^@ "C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то                         

    `C = (DeltaQ)/(Deltat)`.  (1.1)

    Опыт показывает, что при обычных температурах `(200-500 sf"К")` теплоёмкость большинства твёрдых и жидких тел почти не зависит от температуры. Для большинства расчётов будем принимать, что теплоёмкость какого-нибудь вещества есть величина постоянная.

    Кроме теплоёмкости тела `C` вводят ещё удельную теплоёмкость `c` - теплоёмкость единицы массы вещества. Именно эта величина обычно приводится в справочниках физических величин. Удельная теплоёмкость `c` связана с теплоёмкостью тела `C` и массой `m` тела соотношением:

    `C = c*m`. (1.2)

    Приведённые формулы позволяют рассчитать, какое количество теплоты `Q` надо передать телу массы `m`, чтобы повысить его температуру от значения `t_1` до значения `t_2`:

    `Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1 )`. (1.3)

    Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

    Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

    Теплоизолирующей является оболочка калориметра – прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

    Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса:

    `Q_(sf"пол") = Q_(sf"отд")` (1.4)

    В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

    Плавление – процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

    Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы  `m` при температуре плавления в жидкое состояние, равно

    `Q_(sf"пл") = lambda * m`. (1.5)

    Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

    Процесс кристаллизации – это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

    Испарение – это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

    Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

    `Q_(sf"исп") =L*m`. (1.6)

    Конденсация – процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

    Кипение – процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).



  • Первый закон термодинамики

    Внутренняя энергия тела (термодинамической системы) может меняться при совершении работы и в процессе теплопередачи. Закон сохранения и превращения энергии, распространённый на тепловые явления, называется первым законом термодинамики (первым началом термодинамики) и записывается в виде


    Q=U+AQ=\triangle U+A.                                                                           (15)


    Здесь QQ – количество теплоты, сообщённое системе. QQ считается положительным, если система в процессе теплопередачи получает энергию, и отрицательным, если отдаёт энергию, U\triangle U – изменение внутренней энергии системы, AA – работа, совершаемая системой над окружающими телами. В зависимости от характера процесса QQ, U\triangle U и AA могут быть любого знака и даже нулевыми.


    Покажем, что для любого идеального газа (одноатомного, двухатомного, многоатомного) изменение внутренней энергии U\triangle U в любом процессе можно находить по формуле


    U=νcVT\triangle U=\nu c_V\triangle T.                                                               (16)


    Здесь QQ – изменение температуры в этом процессе, ν\nu – число молей газа, cVc_V – молярная теплоёмкость газа при постоянном объёме.


    Доказательство

    Для доказательства проведём с газом процесс при постоянном объёме, изменив температуру от T1T_1 до T2T_2 (T=T2-T1)(\triangle T=T_2-T_1). Тогда количество теплоты Q=νcV·TQ=\nu c_V\cdot\triangle T, согласно определению теплоёмкости, а работа газа A=0A=0, т. к. объём `V="const"`.  По первому закону термодинамики Q=U+AQ=\triangle U+A, и поэтому νcVT=U\nu c_V\triangle T=\triangle U. Поскольку внутренняя энергия идеального газа зависит только от температуры, то в любом другом процессе, когда температура меняется от T1T_1 до T2T_2, изменение внутренней энергии находится по формуле, полученной в процессе с `V="const"`.


    У идеального газа при T=0T=0 значение внутренней энергии полагается равным нулю. Если считать ещё, что cVc_V не зависит от температуры, т. е. `c_V="const"`, то можно записать, что


    U=νcVTU=\nu c_VT                                                                                 (17)


    Найдём значение молярной теплоёмкости при постоянном объёме у одноатомного идеального газа. Поскольку U=νcVT\triangle U=\nu c_V\triangle T и U=32RνT\triangle U=\dfrac32R\nu\triangle T, то cV=32Rc_V=\dfrac32R. Интересно заметить, что молярная теплоёмкость при постоянном объёме у всех одноатомных  идеальных газов получилась одна и та же:


    cV=32Rc_V=\dfrac32R                                                                              (18)


    Оказывается, что молярные теплоёмкости при постоянном объёме у всех двухатомных идеальных газов равны 52R\dfrac52R, а у трёхатомных и многоатомных  (атомы у которых расположены не на одной прямой) – 3R3R. Удельные же теплоёмкости у всех одноатомных идеальных газов различные и зависят от молярной массы. Аналогично для двухатомных и многоатомных газов. Заметим, что указанные значения молярной теплоёмкости верны, если температура газа не слишком велика, и поэтому колебания атомов в молекуле не учитываются.


    Приведём полезную таблицу с выражениями для молярной теплоёмкости cVc_V и средней кинетической энергии `barE` поступательного и  вращательного движений молекулы у одноатомного, двухатомного и многоатомного идеального газа (в этой таблице kk – постоянная  Больцмана):


    Газ
    одноатомный двухатомный многоатомный
    `barE` `3/2kT` `5/2kT` `3kT`
    `c_V` `3/2R` `5/2R` `3R`


    В заключение выведем уравнение Роберта Майера

    cP=cV+Rc_P=c_V+R,                                                                                       (19)

    связывающее молярные теплоёмкости при постоянном давлении cPc_P и постоянном объёме cVc_V для любого идеального газа.

    Вывод

    Для вывода проведём изобарический процесс с  молями идеального газа, переведя газ из состояния с параметрами PP, V1V_1, T1T_1 в состояние с параметрами PP, V2V_2, T2T_2.  По первому закону термодинамики νcPT=νcVT+PV\nu c_P\triangle T=\nu c_V\triangle T+P\triangle V. Запишем уравнения состояния газа PV1=νRT1PV_1=\nu RT_1  и PV2=νRT2PV_2=\nu RT_2. Вычтя из одного уравнения другое и учтя, что V2-V1=VV_2-V_1=\triangle V и T2-T1=TT_2-T_1=\triangle T, получим PV=νRTP\triangle V=\nu R\triangle T. Таким образом, νcPT=νcVT+νRT\nu c_P\triangle T=\nu c_V\triangle T+\nu R\triangle T. Отсюда cP=cV+Rc_P=c_V+R.


    задача 6

    Теплоизолированный сосуд разделён на две части перегородкой. В одной части находится ν1\nu_1 молей молекулярного кислорода (O2{\mathrm O}_2) при температуре T1T_1, а в другом – ν2\nu_2 молей азота (N2N_2) при температуре T2T_2. Какая температура установится в смеси газов после того, как в перегородке появится отверстие?

    Решение

    Рассмотрим систему из двух газов. Оба газа двухатомные. У них одинаковая молярная теплоёмкость при постоянном объёме cVc_V. Система из двух газов не получает тепла от других тел и работы над телами, не входящими в систему, не совершает. Поэтому внутренняя энергия системы сохраняется:

    ν1cVT1+ν2cVT2=ν1cvT+ν2cVT\nu_1c_VT_1+\nu_2c_VT_2=\nu_1c_vT+\nu_2c_VT

                                        

    Отсюда температура смеси  

    T=ν1T1+ν2T2ν1+ν2T=\dfrac{\nu_1T_1+\nu_2T_2}{\nu_1+\nu_2}.


    задача 7

    Идеальный газ массой m=1 кгm=1\;\mathrm{кг} находится под давлением P=1,5·105 ПаP=1,5\cdot10^5\;\mathrm{Па}. Газ нагрели, давая ему расширяться. Какова удельная теплоёмкость газа в этом процессе, если его температура повысилась на T= 2 К\triangle T=\;2\;\mathrm К, а объём увеличился на V=0,002 м3\triangle V=0,002\;\mathrm м^3? Удельная теплоёмкость этого газа при постоянном объёме cудV=700 Дж/(кг·К)c_{\mathrm{уд}V}=700\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К). Предполагается, что изменения параметров газа в результате проведения процесса малы.

    Решение

    Удельная  теплоёмкость в данном  процессе

    cуд=QmTc_\mathrm{уд}=\dfrac{\triangle Q}{m\triangle T}

    По первому закону термодинамики Q=mcудVT+PV\triangle Q=mc_{удV}\triangle T+P\triangle V. Итак,

    cуд=cудV+PVmT=850 Дж/(кг·К)c_\mathrm{уд}=c_{\mathrm{уд}V}+\dfrac{P\triangle V}{m\triangle T}=850\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К).




    задача 8

    В цилиндре под поршнем находится некоторая масса воздуха. На его нагревание при постоянном давлении затрачено количество теплоты Q=10 кДжQ=10\;\mathrm{кДж}. Найти работу, совершённую при этом газом. Удельная теплоёмкость воздуха при постоянном давлении cудP=103 Дж/(кг·К)c_{\mathrm{уд}P}=10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)ю Молярная масса воздуха μ=29 г/моль\mu=29\;\mathrm г/\mathrm{моль}.

    Решение

    1 способ. Пусть газ перевели из состояния с параметрами PP, V1V_1, T1T_1 в состояние с параметрами PP, V2V_2, T2T_2. Запишем уравнение Менделеева – Клапейрона для обоих состояний и вычтем из одного уравнения другое. Учитывая, что V2-V1=VV_2-V_1=\triangle VT2-T1=TT_2-T_1=\triangle T, имеем PV=mμRTP\triangle V=\dfrac m\mu R\triangle T. Но PV=AP\triangle V=A – работа газа. Поэтому A=mμRTA=\dfrac m\mu R\triangle T. При изобарическом процессе Q=mcудPTQ=mc_{\mathrm{уд}P}\triangle T.  Окончательно,

    A=RQμcудP2,74·103  Дж=2,74 кДжA=\dfrac{RQ}{\mu c_{\mathrm{уд}P}}\approx2,74\cdot10^{3\;}\;\mathrm{Дж}=2,74\;\mathrm{кДж}

    2 способ. Согласно уравнению Р. Майера удельные теплоёмкости при постоянном давлениии cудPc_{\mathrm{уд}P} и при постоянном объёме cудVc_{\mathrm{уд}V} связаны соотношением cудV=cудP-Rμc_{\mathrm{уд}V}=c_{\mathrm{уд}P}-\dfrac R\mu.  По первому закону термодинамики Q=mcудVT+AQ=mc_{\mathrm{уд}V}\triangle T+A. Подставляя в последнее равенство m=QcудTm=\dfrac Q{c_\mathrm{уд}\triangle T} и выражение для  cудVc_{\mathrm{уд}V} находим `A`.


  • §7. Круговые процессы (циклы)

      

    Круговым процессом (или циклом)

    называется термодинамический процесс с телом, в результате совершения которого тело, пройдя через ряд состояний, возвращается в исходное состояние.


    Если все процессы в  цикле  равновесные, то  цикл  считается равновесными. Его  можноизобразить графически, и получится замкнутая кривая. На рис. 7 показан график зависимости давления `P` от объёма `V` (диаграмма P-VP-V) для некоторого цикла `1–2–3–4–1`, совершаемого газом. На участке `4–1–2` газ расширяется  и совершает положительную работу `A_1`, численно равную  площади  фигуры V1412V2V_1412V_2. На  участке  `2–3–4`  газ сжимается и совершает отрицательную работу A2A_2, модуль которой равен площади фигуры V2234V1V_2234V_1. Полная работа газа за цикл A=A1+A2A=A_1+A_2, т. е. положительна  и равна  площади фигуры `1–2–3–4–1`,  изображающей цикл на диаграмме P-VP-V.

    Прямым циклом

    называется круговой процесс, в котором тело совершает положительную работу за цикл. Прямой равновесный цикл на диаграмме  P-VP-V изображается замкнутой кривой, которая обходится по часовой стрелке. Пример прямого цикла дан на рис. 7.

    Обратным циклом

    называется круговой процесс, в котором тело совершает отрицательную работу за цикл. На диаграмме P-VP-V замкнутая кривая равновесного обратного цикла обходится против часовой стрелки.

     В любом равновесном цикле работа за цикл равна по модулю площади фигуры, ограниченной кривой на диаграмме P-VP-V.

    В  круговом  процессе   тело  возвращается  в  исходное  состояние, т. е.  в  состояние с первоначальной внутренней энергией. Это значит, что изменение внутренней энергии за цикл равно нулю: U=0\triangle U=0. Так как по первому закону термодинамики для всего цикла Q=U+AQ=\triangle U+A, то Q=AQ=A. Итак, алгебраическая сумма всех количеств теплоты, полученной телом за цикл, равна работе тела за цикл.

    На некоторых участках прямого цикла тело получает от окружающих тел количество теплоты Q+Q^+ (Q+>0)(Q^+>0), а на некоторых отдаёт Q-Q^- т. е. получает отрицательное количество теплоты `«-Q^(-)»` `(Q^(-)>0)`. 

    За цикл тело совершает положительную работу `A`.

    Коэффициентом полезного действия прямого цикла называется величина η=AQ+\eta=\dfrac A{Q^+}

    Поскольку A=Q++(-Q-)A=Q^++(-Q^-), то

    η=Q+-Q-Q+=1-Q-Q+\eta=\dfrac{Q^+-Q^-}{Q^+}=1-\dfrac{Q^-}{Q^+}.                                                 (20)


    Для  обратного  цикла  коэффициент  полезного  действия  не  вводится.

  • §8. Тепловые машины

    Пусть есть тело, называемое рабочим телом, которое может совершать цикл (не обязательно равновесный), периодически вступая в тепловой контакт с двумя телами. Тело с более высокой температурой назовём условно нагревателем, а с более низкой температурой – холодильником. За цикл рабочее тело совершает положительную или отрицательную работу AA. Такое устройство будем называть тепловой машиной. Тепловая машина, которая служит для получения механической работы, называется  тепловым двигателем. Тепловая машина, служащая для передачи количества теплоты от менее нагретого тела (холодильника) к более нагретому (нагревателю), используя работу окружающих тел над рабочим телом, называется тепловым насосом или холодильной установкой (холодильником). Деление на тепловые насосы и холодильные установки условное, связанное с предназначением этих тепловых машин. Тепловой насос используется для поддержания в помещении температуры, которая выше температуры окружающей среды. Холодильная установка используется для поддержания в некотором объёме  (камере)  температуры  более  низкой, чем снаружи. 



    В тепловом двигателе рабочее тело совершает прямой цикл, а в тепловом насосе и холодильной установке – обратный.


    В тепловом двигателе рабочее тело получает за цикл от нагревателя количество теплоты Q+Q^+ (рис. 8) и отдаёт холодильнику положительное количество теплоты Q-Q^- (получает от холодильника отрицательное количество теплоты «-Q--Q^-»). При этом за цикл рабочее тело совершает работу AA.  Коэффициентом полезного действия  (КПД)  теплового двигателя называется КПД соответствующего прямого цикла, т. е. отношение совершаемой за цикл работы AA к полученному за цикл от нагревателя количеству теплоты Q+:Q^+:   

    η=AQ+\eta=\dfrac A{Q^+}.

    По первому закону термодинамики, применённому к рабочему телу теплового двигателя за цикл, Q++(-Q-)=A.Q^++(-Q^-)=A. Поэтому

     η=Q+-Q-Q+=1-Q-Q+\eta=\dfrac{Q^+-Q^-}{Q^+}=1-\dfrac{Q^-}{Q^+}.

    Видим, что КПД теплового двигателя меньше единицы. Причиной этого является то, что для обеспечения периодичности в работе теплового двигателя необходимо часть тепла, взятого у нагревателя, обязательно отдать холодильнику.

    С. Карно (1796 – 1832) установил, что максимальный КПД теплового двигателя, работающего с нагревателем температуры T1T_1 и холодильником температуры T2T_2, независимо от рабочего тела есть 

    η=1-T2T1\eta=1-\dfrac{T_2}{T_1}.                                                                 (21)

    Это достигается, если рабочее тело совершает цикл Карно, т. е. равновесный цикл, состоящий из двух адиабат и двух изотерм с температурами T1T_1 и T2T_2. На изотерме с T1T_1 рабочее тело получает тепло от нагревателя, а на изотерме с T2T_2 – отдаёт тепло холодильнику. Цикл Карно для идеального газа изображён на рис. 9:  `1-2` и `3-4` – изотермы, `2-3` и  `4-1` – адиабаты.  Тепловая  машина,  работающая   по прямому или обратному циклу Карно, называется идеальной тепловой машиной.

    задача 9

    Газ, совершающий цикл Карно, отдаёт холодильнику `70%` теплоты, полученной от нагревателя. Температура нагревателя T1=400 КT_1=400\;\mathrm К. Найти температуру холодильника.

    Решение

    Пусть газ получает за цикл от нагревателя количество теплоты Q1Q_1. Тогда холодильник получает от газа количество теплоты 0,7Q10,7Q_1. Применив первый закон термодинамики для всего цикла, получим, что Q1+(-0,7Q1)=AQ_1+(-0,7Q_1)=A. Отсюда работа за цикл A=0,3Q1A=0,3Q_1 . КПД цикла η=AQ1=0,3\eta=\dfrac A{Q_1}=0,3. Поскольку для цикла Карно η=1-T2T1\eta=1-\dfrac{T_2}{T_1}, то температура холодильника

    T2=T1(1-η)=0,7T1=280 КT_2=T_1(1-\eta)=0,7T_1=280\;\mathrm К.


    задача 10

    КПД тепловой машины, работающей по циклу (рис. 10), состоящему из изотермы `1 – 2`, изохоры `2 – 3` и адиабатического процесса `3 – 1`, равен η\eta, а разность максимальной и минимальной температур газа в цикле равна T\triangle T. Найти работу, совершённую ν\nu молями одноатомного идеального газа в изотермическом процессе. 

    Решение

    При решении задач, в которых фигурирует КПД цикла, полезно предварительно проанализировать все  участки  цикла, используя первый  закон термодинамики, и выявить  участки, где рабочее  тело получает и где  отдаёт  тепло.

    Проведём мысленно ряд изотерм на диаграмме PPVV. Тогда станет ясно, что максимальная температура в цикле будет на изотерме `1 – 2`, а минимальная в точке `3`. Обозначим их  через T1T_1 и T3T_3 соответственно.

    Для  участка `1 – 2` изменение внутренней энергии U2-U1=0U_2-U_1=0. По первому закону термодинамики Q12=(U2-U1)+A12Q_{12}=(U_2-U_1)+A_{12}. Так как на участке `1 – 2` газ расширялся, то работа газа A12>0A_{12}>0. Значит, и подведённое к газу тепло на этом участке Q12>0Q_{12}>0 , причём Q12=A12Q_{12}=A_{12} .          

    На участке `2 – 3` работа газа равна нулю. Поэтому Q23=U3-U2Q_{23}=U_3-U_2.  Воспользовавшись записанными выше выражениями для U3U_3 и U2U_2 и тем, что T1-T3=TT_1-T_3=\triangle T, получим Q23=-νcVT<0Q_{23}=-\nu c_V\triangle T<0 . Это означает, что на участке 2 – 3 газ получает отрицательное количество теплоты, т. е. фактически отдаёт тепло.

    На участке `3 – 1` теплообмена нет, т. е. Q31=0Q_{31}=0 и по 1-му закону термодинамики 0=(U1-U3)+A310=(U_1-U_3)+A_{31}. Тогда работа газа

    A31=U3-U1=νcVT3-T1=-νcVTA_{31}=U_3-U_1=\nu c_V\left(T_3-T_1\right)=-\nu c_V\triangle T.

         Итак, за цикл газ совершил работу A12+A31=A12-νcVTA_{12}+A_{31}=A_{12}-\nu c_V\triangle T и получил тепло только на участке `1 – 2`. КПД цикла

    η=A12+A31Q12=A12-νcVTA12\eta=\dfrac{A_{12}+A_{31}}{Q_{12}}=\dfrac{A_{12}-\nu c_V\triangle T}{A_{12}}.

         Так как cV=32Rc_V=\dfrac32R, то работа газа на изотерме

    A12=3νRT2(1-η)A_{12}=\dfrac{3\nu R\triangle T}{2(1-\eta)}.

  • §9. Фазовые превращения

    Состояния, в которых может находиться то или иное вещество, можно разделить на так называемые агрегатные состояния: твёрдое, жидкое, газообразное. У некоторых веществ нет резкой границы между различными агрегатными состояниями. Например, при нагревании стекла (или другого аморфного вещества) происходит постепенное его размягчение, и невозможно установить момент перехода из твёрдого состояния в жидкое.

    Вещество может переходить из одного состояния в другое. Если при этом меняется агрегатное состояние вещества или скачком меняются некоторые характеристики и физические свойства вещества (объём, плотность, теплопроводность, теплоёмкость и др.), то говорят, что произошёл фазовый переход – вещество перешло из одной фазы в другую.

    Фазой

    называется физически однородная часть вещества, отделённая от других частей границей раздела.

    Пусть в сосуде заключена вода, над которой находится смесь воздуха и водяных паров. Эта система является двухфазной, состоящей из жидкой фазы и газообразной. Можно сделать систему и с двумя различными жидкими фазами: капелька ртути в сосуде с водой. Капельки тумана в воздухе образуют с ним двухфазную систему.

    Условия равновесия фаз для многокомпонентных веществ, т. е. веществ, состоящих из однородной смеси нескольких сортов молекул, достаточно сложны. Например, для смеси вода – спирт газообразная и жидкая фазы этой смеси при равновесии имеют различные концентрации своих компонент, зависящие от давления и температуры. Ниже будут рассмотрены фазовые превращения только для однокомпонентных веществ.

    При заданном давлении существует вполне определённая температура, при которой две фазы однокомпонентного вещества находятся в равновесии и могут переходить друг в друга при этой температуре. Пока одна фаза полностью не перейдёт в другую, температура будет оставаться постоянной, несмотря на подвод или отвод тепла. Поясним это на примерах.

    Рассмотрим двухфазную систему вода – пар, находящуюся в замкнутом сосуде. При давлении P0=1 атм105 ПаP_0=1\;атм\approx10^5\;\mathrm{Па} равновесие между паром и водой наступит при `100^@"C"`. Подвод к системе тепла вызывает кипение – переход жидкости в газ при постоянной температуре. Отвод от системы тепла вызывает конденсацию – переход пара в жидкость. При давлении 0,58P00,58P_0 (почти вдвое меньше нормального атмосферного) равновесие между паром и водой наступает при `85^@"C"`. При давлении 2P02P_0 равновесие фаз достигается при температуре `~~120^@"C"` (такие условия в скороварке).

    Другой пример. Фазовое равновесие между льдом и водой при внешнем давлении P0=1 атмP_0=1\;\mathrm{атм} осуществляется, как известно, при `0^@"C"`. Увеличение внешнего давления на одну атмосферу понижает температуру фазового перехода на `0,007^@"C"`. Это значит, что температура плавления льда понизится на эту же незначительную величину.

    Фазовые переходы для однокомпонентного вещества, сопровождающиеся переходом из одного агрегатного состояния в другое, идут с поглощением или выделением тепла. К ним относятся плавление и кристаллизация, испарение и конденсация. Причём, если при переходе из одной фазы в другую тепло выделяется, то при обратном переходе поглощается такое же количество теплоты.

    Чтобы расплавить кристаллическое тело массой mm, надо подвести количество теплоты

    Q=λ·mQ=\lambda\cdot m.                                                                (22)

    Коэффициент пропорциональности λ\lambda называется удельной теплотой  плавления. Вообще говоря, λ\lambda зависит от той температуры, при которой происходит фазовый переход (температура плавления). Во многих реальных ситуациях этой зависимостью можно пренебречь.

    Для превращения в пар жидкости массой `m` надо подвести количество теплоты

    Q=r·mQ=r\cdot m                                                                                      (23)

    Коэффициент пропорциональности rr называется удельной теплотой  парообразования. rr зависит от температуры кипения, т. е. от той температуры, при которой осуществляется фазовое равновесие жидкость – пар для заданного давления.

    Значения λ\lambda и rr для разных веществ даются в таблицах обычно для тех температур фазовых переходов, которые соответствуют нормальному атмосферному давлению. При этом в величины λ\lambda и особенно rr входит не только изменение внутренней энергии вещества при переходе одной фазы в другую, но и работа этого вещества над внешними телами при фазовом переходе! Например, удельная теплота парообразования воды при `100^@"C"` и P105 ПаP\approx10^5\;\mathrm{Па} на `9//10` состоит из изменения внутренней энергии вода - пар и на `1//10` (чуть меньше) из работы, которую совершает расширяющийся пар над окружающими телами. 

    задача 11

    В латунном калориметре массой m1=200 гm_1=200\;\mathrm г находится кусок льда массой m2=100 гm_2=100\;\mathrm г при температуре `t_1=-10^@"C"`. Сколько пара, имеющего температуру `t_2=100^@"C"`, необходимо впустить в калориметр, чтобы образовавшаяся вода имела температуру `40^@"C"`?

    Удельные теплоёмкости латуни, льда и воды c1=0,4·103  Дж/(кг·К)c_1=0,4\cdot10^{3\;}\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)

    c2=2,1·103 Дж/(кг·К)c_2=2,1\cdot10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К) ,

    c3=4,19·103 Дж/(кг·К)c_3=4,19\cdot10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К) соответственно; удельная теплота парообразования воды `r=22,6*10^5  "Дж"//"кг"`;

    удельная теплота плавления льда λ=33,6·104 Дж/кг\lambda=33,6\cdot10^4\;\mathrm{Дж}/\mathrm{кг}


    Решение

    При конденсации пара массой mm при `100^@"C"` (T2=373 КT_2=373\;\mathrm К) выделяется количество теплоты Q1=rmQ_1=rm. При охлаждении получившейся воды от T2=373 КT_2=373\;\mathrm К до θ=313 К\theta=313\;К `(40^@"C")` выделяется количество теплоты Q2=c3m(T2-θ).Q_2=c_3m(T_2-\theta).

    При нагревании льда от T1=263 КT_1=263\;\mathrm К `(-10^@"C")` до T0=273 КT_0=273\;\mathrm К `(0^@"C")` поглощается количество теплоты Q3=c2m2(T0-T1)Q_3=c_2m_2(T_0-T_1). При плавлении льда поглощается количество теплоты Q4=λm2Q_4=\lambda m_2. При нагревании получившейся воды от T0T_0 до θ\theta поглощается количество теплоты Q5=c3m2(θ-T0)Q_5=c_3m_2(\theta-T_0). Для нагревания калориметра от T1 T_1\; до θ\theta требуется количество теплоты Q6=c1m1(θ-T1)Q_6=c_1m_1(\theta-T_1). По закону сохранения энергии

    Q1+Q2=Q3+Q4+Q5+Q6Q_1+Q_2=Q_3+Q_4+Q_5+Q_6, или

    rm+c3m(T2-θ)=c2m2(T0-T1)+λm2+c3m2(θ-T0)+c1m1(θ-T1)rm+c_3m(T_2-\theta)=c_2m_2(T_0-T_1)+\lambda m_2+c_3m_2(\theta-T_0)+c_1m_1(\theta-T_1).

    Отсюда m=c2m2(T0-T1)+λm2+c3m2(θ-T0)+c1m1(θ-T1)r+c3(T2-θ)m=\dfrac{c_2m_2(T_0-T_1)+\lambda m_2+c_3m_2(\theta-T_0)+c_1m_1(\theta-T_1)}{r+c_3(T_2-\theta)}\approx

    22·10-3 кг=22 г\approx22\cdot10^{-3}\;\mathrm{кг}=22\;\mathrm г.







  • §10. Насыщенный пар. Кипение. Влажность

     

    Насыщенным  (насыщающим) паром

    называется пар, находящийся в динамическом равновесии со своей жидкостью: скорость испарения равна скорости конденсации.

    Давление и плотность насыщенного пара для данного вещества зависят от его температуры и увеличиваются при увеличении температуры.


    Условие кипения жидкости – это условие роста пузырьков насыщенного пара в жидкости. Пузырёк может расти, если давление насыщенного пара внутри него будет не меньше внешнего давления. Итак,

    жидкость кипит при той температуре, при которой давление её насыщенных паров равно внешнему давлению.

    Приведём полезный пример.

    Пример

    Известно, что при нормальном атмосферном давлении `P_0~~10^5  "Па"` вода кипит при `100^@"C"`. Это означает, что давление насыщенных паров воды при `100^@"C"`  равно `P_0~~10^5  "Па"`.

    Пары воды в атмосферном воздухе обычно ненасыщенные. Абсолютной влажностью воздуха называется плотность водяных паров `rho`. Относительной влажностью воздуха называется величина

    φ=PPнас\boxed{\varphi=\dfrac P{P_\mathrm{нас}}}.                                                                 (24)

    Здесь `P` – парциальное давление паров воды при данной температуре в смеси воздух – пары воды, `P_"нас"` – парциальное давление насыщенных водяных паров при той же температуре. Опыт показывает, что `P_"нас"` зависит только от температуры и не зависит от плотности и состава воздуха.

    Если пар считать идеальным газом, то `P=rho/muRT`, `P_"нас"=(rho_"нас")/muRT`,

    где `rho` и `rho_"нас"` – плотности ненасыщенного и насыщенного водяного пара, `mu=18  "г"//"моль"`. Деление одного уравнения на другое даёт `P/P_"нас"=rho/rho_"нас"`. Итак,

                          φ=PPнасρρнас\boxed{\varphi=\dfrac P{P_\mathrm{нас}}\approx\dfrac\rho{\rho_\mathrm{нас}}}.                                                                  (25)



    Задача 12

    Воздух имеет температуру `60^@"C"` и абсолютную влажность `50  "г"//"м"^3`. Какой будет абсолютная влажность этого воздуха, если температура понизится до  `10^@"C"`? Известно, что при `10^@"C"` давление насыщенного пара воды `P=1230  "Па"`.

    Решение

    При `10^@"C"` `(T=283  "К")` плотность насыщенных паров воды

    `rho=(muP)/(RT)=9,4*10^(-3)  "кг"//"м"^3=9,4  "г"//"м"^3`.

    Эта величина меньше, чем `50  "г"//"м"^3`. Поэтому часть пара сконденсируется, и абсолютная влажность будет `9,4  "г"//"м"^3`. 

  • §1. Основы молекулярно-кинетической теории

    Под идеальным газом понимают газ, состоящий из молекул, удовлетворяющих двум условиям:

    1) размеры молекул малы по сравнению со средним расстоянием между ними;

    2) силы притяжения и отталкивания между молекулами проявляются только на расстояниях между ними, сравнимых с размерами молекул.

    Молекулы идеального газа могут состоять из одного атома, двух и большего число атомов.

    Для простейшей модели одноатомного идеального газа, представляющей собой совокупность маленьких твёрдых шариков, упруго соударяющихся друг с другом и со стенками сосуда, можно вывести, используя законы механики Ньютона,                                                                       

    основное уравнение молекулярно-кинетической  теории идеального газа: 

    `P=2/3n barE`.                                                                  (1)   

    Здесь PP – давление газа, nn – концентрация молекул (число молекул в единице объёма),  `barE` - средняя кинетическая энергия поступательного движения одной молекулы (сумма кинетической энергии поступательного движения всех молекул в сосуде, делённая на число молекул в сосуде). Вывод этого уравнения дан в школьном учебнике.

    Уравнение (1) оказывается справедливым и для многоатомного идеального газа, молекулы которого могут вращаться и обладать, поэтому, кинетической энергией вращения. Полная кинетическая энергия много-атомной молекулы складывается из кинетической энергии поступательного движения E=m0v22\dfrac{E=m_0v^2}2 (m0m_0 - масса молекулы, vv - скорость центра масс молекулы) и кинетической энергии вращения. В случае многоатомного идеального газа в (1) под `barE` подразумевается только средняя кинетическая энергия поступательного движения молекулы: E¯=m0v2¯2\dfrac{\overline E=m_0\overline{v^2}}2  где v2¯\overline{v^2} - среднее значение квадрата скорости молекулы.

    Пусть есть смесь нескольких идеальных газов. Для каждого газа можно записать уравнение Pi=23niE¯iP_i=\dfrac23n_i{\overline E}_i, где nin_i концентрация молекул - ii-го газа, PiP_i - парциальное давление этого газа (давление при мысленном удалении из сосуда молекул других газов). Поскольку давление на стенку сосуда обусловлено ударами о неё молекул, то общее давление смеси идеальных газов равно сумме парциальных давлений отдельных газов:

    закон Дальтона

    P=iPiP=\sum_iP_i.

    Температуру можно ввести разными способами. Не останавливаясь на них, отметим, что у идеального газа средняя кинетическая энергия поступательного движения молекул `barE` связана с температурой TT соотношением:

    E¯=32kT,\overline E=\dfrac32kT,                                                                (2)

    где k=1,38·10-23 k=1,38\cdot10^{-23\;} Дж/К - постоянная Больцмана. При этом мы считаем, что движение молекул описывается законами механики Ньютона. В системе СИ температурас TT измеряется в градусах Кельвина (К). В быту температуру часто измеряют в градусах Цельсия  (C^\circ\mathrm C). Температуры, измеряемые по шкале Кельвина TT и по шкале Цельсия tt связаны численно соотношением: T=t+273T=t+273.

    Итак, температура является мерой средней кинетической энергии поступательного движения молекул: m0v2¯/2=32kTm_0\overline{v^2}/2=\frac32kT.  Величина

    vкв=v2¯=3kTm0v_\mathrm{кв}=\sqrt{\overline{v^2}}=\sqrt{\dfrac{3kT}{m_0}}                                                (3)

    называется средней квадратичной скоростью. Ясно, что vкв=v2¯v_\mathrm{кв}=\overline{v^2}. Она характеризует скорость хаотического движения молекул, называемого ещё тепловым движением. Интересно заметить, что средняя квадратичная скорость молекул идеального газа почти не отличается от средней арифметической скорости молекул vсрv_\mathrm{ср} (среднее значение модуля скорости): vкв1,085vсрv_\mathrm{кв}\approx1,085v_\mathrm{ср}. Поэтому под средней скоростью теплового движения молекул идеального газа можно понимать любую из этих скоростей.

  • §2. Уравнение состояния идеального газа

    Связь между давлением, концентрацией и температурой для идеального газа можно получить, исключив `barE` из равенств (1) и (2):

    `P=nkT`.                                                                  (4)

    Поскольку n=NVn=\dfrac NV (NN – число молекул в сосуде объёмом VV), то равенство (4) принимает вид:

    PV=NkTPV=NkT.                                                                                    (5)

    Пусть mm – масса газа в сосуде, μ\mu – молярная масса данного газа, тогда ν=mμ\nu=\dfrac m\mu  есть число молей газа в сосуде. Число молекул NN в сосуде, число молей газа ν\nu и постоянная Авогадро NАN_А связаны соотношением N=νNАN=\nu N_А. Подставляя это выражение для NN в (5), получаем: PV=νNAkTPV=\nu N_AkT. Произведение постоянной Авогадро NА=6,02·1023 N_А=6,02\cdot10^{23\;} моль-1{}^{-1} на постоянную Больцмана kk называют универсальной газовой постоянной: R=NA·k8,31R=N_A\cdot k\approx8,31  Дж/(моль·\cdotК)  Таким образом,

    PV=νRTPV=\nu RT.                                                                           (6)

    Это уравнение, связывающее давление PP, объём  VV, температуру TT  (по шкале Кельвина) и число молей идеального газа ν\nu, в записи называется уравнением Менделеева – Клапейрона.

    уравнение Менделеева – Клапейрона

    PV=mμRTPV=\dfrac m\mu RT                                                                (7)

    Из равенства (7) легко получить зависимость между давлением PP, плотностью ρ\rho (ρ=mV)(\rho=\dfrac mV)  и температурой TT идеального газа

    P=ρμRTP=\dfrac\rho\mu RT.                                                                  (8) 

    Каждое из уравнений (5), (6) и (7), связывающих три макроскопических параметра газа PP, VV и TT  и  называется уравнением состояния идеального газа. Здесь, конечно, речь идёт только о газе, находящемся в состоянии термодинамического равновесия, которое означает, что все макроскопические параметры не изменяются со временем.

    Несколько слов о равновесных процессах. Если процесс с идеальным газом (или любой термодинамической системой) идёт достаточно медленно, то давление и температура газа во всём объёме газа успевают выровняться и принимают в каждый момент времени одинаковые по всему объёму значения. Это означает, что газ проходит через последовательность равновесных (почти равновесных) состояний. Такой процесс с газом называется равновесным. Другое название равновесного процесса – квазистатический. Все реальные процессы протекают с конечной скоростью и поэтому неравновесны. Но в ряде случае неравновесностью можно пренебречь. В равновесном процессе в каждый момент времени температура TT,  давление PP и объём VV газа имеют вполне определённые значения, т. е. существует зависимость между PP и TT, VV и TT, PP и TT. Это означает, что равновесный процесс можно изображать в виде графиков этих зависимостей. Неравновесный процесс изобразить графически невозможно.

    Напомним ещё раз, что соотношения (4) – (8) справедливы только для идеальных газов. В смеси нескольких идеальных газов уравнения вида (4) – (8) справедливы для каждого газа в отдельности, причём объём VV и температура TT у всех газов одинаковы, а парциальные давления отдельных газов и общее давление в смеси связаны законом Дальтона.

    Покажем, что для смеси идеальных газов общее давление PP, объём VV, температура TT и суммарное число молей  связаны равенством

    PV=νRTPV=\nu RT                                                                                 (9)

    которое внешне совпадает с равенством (6) для одного газа.

    Запишем уравнение состояния для каждого сорта газа:

    P1V=ν1RTP_1V=\nu_1RT,

    P2V=ν2RTP_2V=\nu_2RT,

    \dots\dots\dots

    Сложив все уравнения и учтя, что ν=ν1+ν2+\nu=\nu_1+\nu_2+\cdots и P=P1+P2+P=P_1+P_2+\cdots
    (по закону Дальтона), получим (9).

    Для смеси идеальных газов можно записать уравнение

    PV=mμсрRTPV=\dfrac m{\mu_\mathrm{ср}}RT                                                          (10)

    аналогичное уравнению (7) для одного газа. Здесь PP – давление в смеси, VV – объём смеси, m=m1+m2+m=m_1+m_2+\cdots – масса смеси, TT – температура смеси,   μср=mν\mu_\mathrm{ср}=\dfrac m\nuсредняя молярная масса смеси, состоящей из ν=ν1+ν2+\nu=\nu_1+\nu_2+\cdots молей.

    Действительно, равенство (9) для смеси идеальных газов можно записать в виде PV=mm/νRTPV=\dfrac m{\displaystyle m/\nu}RT Учитывая, что mν\dfrac m\nu есть μср\mu_\mathrm{ср} получим (10). Например, средняя молярная масса атмосферного воздуха, в котором азот (μN2=28 г/моль)(\mu_{N_2}=28\;\mathrm г/\mathrm{моль})  преобладает над кислородом (μO2=32 г/моль)(\mu_{O_2}=32\;\mathrm г/\mathrm{моль}) равна `29` г/моль

    Поведение реальных газов при достаточно низких температурах и больших плотностях газов уже плохо описывается моделью идеального газа.

    Задача 1

     В  сосуде объёмом `4` л находится `6` г газа под давлением  `80` кПа. Оценить среднюю квадратичную скорость молекул газа.

    Решение

     В задаче V=4 л=4·10-3 м3V=4\;\mathrm л=4\cdot10^{-3}\;\mathrm м^3m=6 г =6·10-3 кгm=6\;\mathrm г\;=6\cdot10^{-3}\;\mathrm{кг},  P=80 кПа=8·104 ПаP=80\;\mathrm{кПа}=8\cdot10^4\;\mathrm{Па}.  Запишем уравнение состояния газа `PV=NkT`.

    Если через m0m_0 обозначить массу молекулы, то N=mm0N=\dfrac m{m_0}m0vкв22=32kT\dfrac{m_0v_\mathrm{кв}^2}2=\dfrac32kT.  Исключая из записанных уравнений  NN и TT находим среднюю квадратичную скорость

    vкв=3PVm=400 м/сv_\mathrm{кв}=\sqrt{\dfrac{3PV}m}=400\;\mathrm м/\mathrm с.

    задача 2

    Идеальный газ изотермически расширяют, затем изохорически нагревают и изобарически возвращают в исходное состояние. Нарисовать графики этого равновесного процесса в координатах  P,VP,V; V,TV,T; P,TP,T.

    Решение

    Построим график в координатах P,VP,V. В процессе изотермического расширения из состояния `1` в состояние `2` зависимость давления газа PP от объёма VV имеет вид: P=νRTVP=\dfrac{\nu RT}V,  что следует из уравнения состояния идеального газа. Поскольку температура TT постоянна, то P=constVP=\dfrac{\mathrm{const}}V, т. е. изотерма `1–2` является гиперболой (рис. 1). В дальнейшем при изохорическом нагревании `V="const"` и зависимость PP от VV изображается   в  координатах   отрезком  вертикальной  прямой `2-3`. 

    Изобарический процесс изображается отрезком горизонтальной прямой `3–1`. Графики этого процесса в других координатах строятся аналогично и приведены на рис 2 и 3.

    задача 3

     В сосуде находится смесь `10` г углекислого газа и `15` г азота. Найти плотность этой смеси при температуре `27^@"C"` и давлении `150` кПа  Газы считать идеальными.


    Решение

     m1=10 г=10-2 кгm_1=10\;\mathrm г=10^{-2}\;\mathrm{кг} – масса  углекислого газа,  m2=15 г =15·10-3 кгm_2=15\;\mathrm г\;=15\cdot10^{-3}\;\mathrm{кг}  –  масса азота;

    μ1=44гмоль=44·10-3 кгмоль\mu_1=44\dfrac{\mathrm г}{\mathrm{моль}}=44\cdot10^{-3}\;\dfrac{\mathrm{кг}}{\mathrm{моль}},

    μ2=28 гмоль=28·10-3кгмоль\mu_2=28\;\dfrac{\mathrm г}{\mathrm{моль}}=28\cdot10^{-3}\dfrac{\mathrm{кг}}{\mathrm{моль}} – молярные массы углекислого газа и азота; температура и давление T=300 КT=300\;\mathrm К, P=1,5·105 ПаP=1,5\cdot10^5\;\mathrm{Па}.   

    Запишем уравнение состояния для каждого газа:  P1V=m1μ1RTP_1V=\dfrac{m_1}{\mu_1}RTP2V=m2μ2RTP_2V=\dfrac{m_2}{\mu_2}RT

    Сложив эти уравнения и учтя, что по закону Дальтона  P=P1+P2P=P_1+P_2, получим 

    PV=(m1μ1+m2μ2)RTPV=(\dfrac{m_1}{\mu_1}+\dfrac{m_2}{\mu_2})RT.

    Следует отметить, что последнее уравнение можно было бы записать и сразу, если воспользоваться готовым результатом (9).

    Выразим из полученного уравнения объём смеси VV и подставим его в выражение для плотности смеси ρ=(m1+m2)/V\rho=(m_1+m_2)/V. Окончательно,

    ρ=(m1+m2)P(m1μ1+m2μ2)RT1,97 кг/м32,0 кг/м3\rho=\dfrac{(m_1+m_2)P}{({\displaystyle\frac{m_1}{\mu_1}}+{\displaystyle\frac{m_2}{\mu_2}})RT}\approx1,97\;\mathrm{кг}/\mathrm м^3\approx2,0\;\mathrm{кг}/\mathrm м^3.


    задача 4

    При комнатной температуре четырёхокись азота частично диссоциирует на двуокись азота: N2O42NO2{\mathrm N}_2{\mathrm O}_4\rightarrow2{\mathrm{NO}}_2. В откачанный сосуд объёмом V= 250 см3V=\;250\;\mathrm{см}^3 вводится m=0,92 гm=0,92\;г жидкой четырёх окиси азота. Когда температура в сосуде увеличивается до `t=27^@"C"`, жидкость полностью испаряется, а давление становится равным P=129 кПаP=129\;\mathrm{кПа}. Какая часть четырёх окиси азота при этом диссоциирует?

    Решение

    Пусть диссоциирует масса m1m_1. Тогда парциальное давление двуокиси азота P1=m1μ1VRTP_1=\dfrac{m_1}{\mu_1V}RT, где μ1=46·10-3 кг/моль\mu_1=46\cdot10^{-3}\;\mathrm{кг}/\mathrm{моль}.  Парциальное давление четырёх окиси азота P2=m-m1μ2VRTP_2=\dfrac{m-m_1}{\mu_2V}RT, где μ2=92·10-3 кг/моль\mu_2=92\cdot10^{-3}\;\mathrm{кг}/\mathrm{моль}.

    По закону Дальтона P=P1+P2P=P_1+P_2. Подставив в последнее равенство выражения для P1P_1 и P2P_2, получаем:

    m1=μ1(PVRTμ2-m)μ2-μ10,27 гm_1=\dfrac{\mu_1({\displaystyle\frac{PV}{RT}}\mu_2-m)}{\mu_2-\mu_1}\approx0,27\;\mathrm г.

  • §3. Внутренняя энергия

    Возьмём макроскопическое тело и перейдём в систему отсчёта, связанную с этим телом. В состав внутренней энергии тела входят кинетическая энергия поступательного движения и вращательного движения молекул, энергия колебательного движения атомов в молекулах, потенциальная энергия взаимодействия молекул друг с другом, энергия электронов в атомах, внутриядерная энергия и др.

    Будем рассматривать явления, в которых молекулы не изменяют своего строения, а температура ещё не так велика, чтобы была необходимость учитывать энергию колебаний атомов в молекуле. При таких явлениях изменение внутренней энергии тела происходит только за счёт изменения кинетической энергии молекул и потенциальной энергии их взаимодействия друг с другом. Для общего баланса энергии имеет значение не сама внутренняя энергия, а её изменение. Поэтому под внутренней энергией макроскопического тела можно подразумевать только сумму кинетической энергии теплового движения всех молекул и потенциальной энергии их взаимодействия.

    Внутренняя энергия есть функция состояния тела, и определяется макроскопическими параметрами, характеризующими состояние термодинамического равновесия тела.

    Потенциальная энергия взаимодействия молекул идеального газа принимается равной нулю. Поэтому внутренняя энергия идеального газа состоит только из кинетической энергии поступательного и вращательного движения молекул и зависит только от температуры. Внутренняя энергия идеального газа от объёма газа не зависит, поскольку расстояние между молекулами не влияет на внутреннюю энергию.

    Потенциальная энергия взаимодействия молекул реальных газов, жидкостей и твёрдых тел зависит от расстояния между молекулами. В этом случае внутренняя энергия зависит не только от температуры, но и от объёма.

    Найдём выражения для внутренней энергии одноатомного идеального газа. Средняя кинетическая энергия одной молекулы этого газа даётся выражением (2). Поскольку в газе массой `m` и молярной массой `mu` содержится ν=mμ\nu=\dfrac m\mu молей и mμNА\dfrac m\mu N_А молекул, то сумма кинетической энергии всех молекул, содержащихся в массе `m` газа, равна

    mμNА·32kT=32mμRT\dfrac m\mu N_А\cdot\dfrac32kT=\dfrac32\dfrac m\mu RT

    где R=kNАR=kN_А – универсальная газовая постоянная.

    Итак, внутренняя энергия одноатомного идеального газа

    U=32mμRT=32νRTU=\dfrac32\dfrac m\mu RT=\dfrac32\nu RT

    Анализ этой формулы подтверждает высказанное выше утверждение, что внутренняя энергия некоторой массы конкретного идеального газа зависит только от температуры.

  • §4. Работа в термодинамике

    Работа, совершаемая термодинамической системой (телом) над окружающими телами, равна по модулю и противоположна по знаку работе, совершаемой окружающими телами над системой.

    При совершении работы часто встречается случай, когда объём тела меняется. Пусть тело (обычно – газ) находится под давлением PP и при произвольном изменении формы изменяет свой объём на малую величину V\triangle V. Работа, совершаемая телом над окружающими телами, равна

    `DeltaA=PDeltaV`.                                                                   (11)


    При положительном V\triangle V (увеличение объёма газа) работа положительна, при V<0\triangle V<0 – отрицательна. Вывод этого выражения для работы дан в школьном учебнике для частного случая расширения газа, находящегося в цилиндре под поршнем при постоянном давлении.

    Любой равновесный процесс, в котором давление будет меняться по некоторому закону от объёма, можно разбить на последовательность элементарных процессов с достаточно малым изменением объёма в каждом процессе, вычислить элементарные работы во всех процессах и затем все их сложить. В результате получится работа тела (газа) в процессе с переменным давлением. В координатах PP, VV абсолютная величина этой работы равна площади под кривой, изображающей зависимость PP от VV при переходе из состояния `1` в состояние `2` (рис. 4). Математически работа выражается интегралом:   

    `A=int_(V_1)^(V_2) P(V)dV`.

    В изобарном процессе, когда давление`P="const"`, работа тела над окружающими телами A=PVA=P\triangle V, где V\triangle V изменение объёма тела за весь процесс, т. е. V\triangle V уже не обязательно мало.


    Задача 5

    Газ переходит из состояния с объёмом V1V_1 и давлением P1P_1 в состояние с объёмом V2V_2 и давлением P2P_2 в процессе, при котором его давление PP зависит от объёма VV линейно (рис. 5). Найти работу газа (над окружающими телами).


    Решение

    Работа газа равна заштрихованной на рис. 5 площади трапеции:

    A=12(P1+P2)(V2-V1)A=\dfrac12(P_1+P_2)(V_2-V_1).


  • §6. Количество теплоты. Теплоёмкость


    Теплообмен

    Энергия, передаваемая телу окружающей средой (другим телом) без совершения работы, называется количеством теплоты. Такой процесс передачи энергии называется теплообменом.

    Сообщим телу (термодинамической системе) в некотором процессе небольшое количество теплоты Q\triangle Q. Будем считать Q>0\triangle Q>0, если тело получает теплоту, и Q<0\triangle Q<0, если отдаёт теплоту. Температура тела при этом изменяется на величину T\triangle T. При повышении температуры T>0\triangle T>0, при понижении температуры T<0\triangle T<0Теплоёмкостью тела в данном процессе называется величина

      C=QTC=\dfrac{\triangle Q}{\triangle T}                                                                 (12)

    Из определения теплоёмкости не следует, что она должна оставаться постоянной в данном процессе. Теплоёмкость может изменяться в течение процесса.      



    Ясно, что теплоёмкость одного и того же тела может быть положительной, отрицательной, нулевой и даже бесконечной в зависимости от характера процесса. Приведём примеры. Пусть есть газ в цилиндре с поршнем (рис. 6).  Осуществим  с  этим  газом четыре  различных процесса.

    Первый процесс

    Будем подогревать газ, закрепив поршень. В таком процессе, когда объём газа постоянен, Q>0\triangle Q>0 и T>0\triangle T>0. Следовательно, C=Q/T>0C=\triangle Q/\triangle T>0

    Второй процесс

    Передвигаем поршень влево, уменьшая объём газа. Газ будет нагреваться, т. е. T>0\triangle T>0. Дадим возможность газу отдавать тепло через стенки цилиндра окружающей среде так, чтобы температура газа всё же повышалась (поместим цилиндр в более холодную среду).

    Тогда количество теплоты, сообщённое газу, Q<0\triangle Q<0 и теплоёмкость газа в таком процессе отрицательна.

    Третий процесс

    Процесс сжатия газа проведём адиабатически, заключив цилиндр в теплонепроницаемую оболочку и теплоизолировав поверхность поршня от газа. В таком процессе Q=0\triangle Q=0T>0\triangle T>0 и теплоёмкость газа равна нулю.

    Четвёртый процесс

    Будем сообщать газу теплоту, двигая при этом поршень вправо так, чтобы температура оставалась постоянной (изотермический процесс). Тогда  и T=0\triangle T=0 и C=C=\infty.

    Введём понятия удельной и молярной теплоёмкостей.

    Удельная теплоёмкость – теплоёмкость единицы массы тела:

    cуд=QmTc_\mathrm{уд}=\dfrac{\triangle Q}{m\triangle T}.                                                       (13)

    Молярная теплоёмкость – теплоёмкость одного моля тела:

    cμ=QνTc_\mu=\dfrac{\triangle Q}{\nu\triangle T}.                                                  (14)

    Здесь ν\nu – число молей тела, mm – масса тела.

    Очевидно, что знаки удельной и молярной теплоёмкостей совпадают со знаком теплоёмкости тела в данном процессе. Легко показать, что  

    C=mcуд=νсμC=mc_\mathrm{уд}=\nu с_\mucμ=μcудc_\mu=\mu c_\mathrm{уд}.

  • §1. Введение

    Настоящее задание посвящено основным законам механики - законам Ньютона и их следствиям: законам изменения и сохранения импульса и энергии материальной точки и систем материальных точек. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая  причина связана с тем, что в течение учебного года учащиеся 11 класса примут участие в олимпиадах разных уровней, а по завершении учебного года будут сдавать ЕГЭ. К контрольным мероприятиям следует готовиться. Задание адресовано тем, кто хочет восстановить и углубить свои знания по механике в рамках курса физики средней школы. Поэтому наряду с простыми задачами рассмотрены и достаточно сложные, техника решения которых порой недостаточно подробно обсуждается в школьном курсе физики.

    Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.

    Механика - наука, изучающая движение тел и способы описания движения и взаимодействия тел.  Для описания механического движения следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.

    В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.

    Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.

    Для математически точного описания движения используются модели физических тел. Материальная точка - модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве определяется положением изображающей её геометрической точки. Единственная механическая (негеометрическая) характеристика материальной точки - её масса.

  • §2. Кинематика

    Рассмотрение задач описания движения традиционно начинается с кинематики. Так называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Начнём с равномерного движения.

    Пример 1

    Корабль `A` и торпеда `B` в некоторый момент времени находятся на расстоянии `l = 1  sf"км"`  друг от друга (см. рис. 1). Скорость корабля  `v_1 = 10  sf"м/с"`, угол `alpha = 60^@`. Скорость торпеды `v_2 = 20  sf"м/с"`. При каком угле  `beta` торпеда попадёт в цель?

    Решение

    По условию цель и торпеда в лабораторной системе отсчёта движутся равномерно, их радиусы векторы зависят от времени по закону

    `vecr_1 (t) = vecr_(01) + vecv_1 t`, 

    `vecr_2 (t) = vecr_(02) + vecv_2 t`

    Перейдём в систему отсчёта, связанную с кораблём (точка `A`) и движущуюся поступательно относительно лаборатории. В этой системе положение торпеды (точки `B`)  в любой момент времени определяется вектором

    `vec rho (t) = vecr_(2)(t) - vecr_(1) (t) = (vecr_(02) - vecr_(01)) + (vecv_2 - vecv_1)t`.

    Отсюда следует, что  в подвижной системе торпеда движется  по прямой, проходящей через её начальное положение, определяемое вектором `vecrho_0 = vecr_(02) - vecr_(01)`, а направляющим вектором прямой является относительная скорость `vec u = vecv_2 - vecv_1`. Такая прямая проходит через начало отсчёта подвижной системы (торпеда попадает в цель) в том случае, когда векторы `vecrho_0` и `vec u` антипараллельны. В рассматриваемой задаче это выполняется при равенстве проекций скоростей `vecv_1` и `vecv_2` на перпендикуляр к `vecrho_0`, т. е. к  `AB`,  `v_1 sin alpha = v_2 sin beta`.

    Отсюда `sin beta = (v_1)/(v_2) sin alpha = (10)/(20) sin 60^@ = (sqrt3)/4 ~~ 0,43`,   `beta ~~25,5^@`.

    Обратимся к равнопеременному движению. Как известно, в этом случае зависимости скорости и перемещения от времени имеют вид

      `vec v (t) = vecv_0 + vec a t`,   `vec r (t) = vecr_0 + vecv_0 t + (vec a t^2)/2`.

    Среди всевозможных случаев равнопеременного движения особое место занимает движение под действием гравитационных сил - свободное падение тел в однородном поле тяжести с постоянным ускорением `vec a = vec g`. Из второго соотношения следует, что при свободном падении вектор перемещения `vec r (t) - vec(r_0)` материальной точки за время от `0` до `t` равен сумме векторов `vecv_0 t` и `(vec g t^2)/2`. Это означает, что движение тела, брошенного под углом к горизонту, есть суперпозиция равномерного прямолинейного движения со скоростью  `vecv_0` и свободного падения в однородном поле тяжести `vec g` с нулевой начальной скоростью.

    Пример 2

    Пушка расположена у основания склона, образующего с горизонтом угол `alpha = 30^@`. Под каким углом `beta` к склону следует произвести выстрел с начальной скоростью `v_0 = 100  sf"м/с"` так, чтобы дальность полёта снаряда вдоль склона была наибольшей? Найдите эту максимальную дальность `S_max`.

    Здесь и далее в Задании ускорение свободного падения `g = 10  sf"м/с"^2`. Сопротивление воздуха пренебрежимо мало.

    Решение

    Перемещение снаряда  за время `T` полёта равно

    `vec r (T) = vecv_0 T + (vec g T^2)/2`,

    (считаем `vecr_0 = vec 0`).  Изобразим эти векторы на рисунке 2.

    Проекции векторов `vecv_0 T` и `(vec g T^2)/2` на направление нормали к склону   равны по величине

    `v_0 T sin beta = (gT^2)/2 cos alpha`.

    Отсюда находим продолжительность `T` полёта мяча `T = (2 v_0)/(g) (sin beta)/(cos alpha)`. Дальность `S` полёта равна алгебраической сумме проекций векторов `vecv_0 T` и `(vec g T^2)/2`  на  склон `S = v_0 T cos beta - (gT^2)/2 sin alpha`.

    С учётом выражения для времени полёта последнее соотношение перепишем в виде

    `S = (v_0^2)/(g cos^2 alpha) (sin (alpha + 2 beta) - sin alpha)`.

    Отсюда следует, что наибольшей дальности соответствует такой угол `beta`, при котором множитель в скобках в последнем соотношении принимает наибольшее значение, т. е.

    `sin (alpha + 2 beta) = 1`,  `alpha + 2 beta = pi/2`,  `beta = 1/2 (pi/2 - alpha) = 1/2 (pi/2 - pi/6 ) = pi/6`.

    Отсюда следует, что выстрел следует производить по биссектрисе угла между склоном и вертикалью. В этом дальность полёта наибольшая и равна

    `S_max = (v_0^2 (1 - sin alpha))/(g cos^2 alpha) ~~ 670 sf"м"`.

    Пример 3

    Камень брошен со скоростью `v_0 = 20  sf"м/с"` под углом `alpha = 60^@` к горизонту. Найдите радиус `R` кривизны траектории в окрестности точки старта. Через какое время `tau` после старта вектор скорости повернётся на  `varphi = 1^@`?

    Решение

    Известно, что движение точки по окружности с постоянной  по величине скоростью есть движение ускоренное, при этом вектор ускорения в  любой момент  времени направлен к центру окружности, а его величина постоянна и определяется, например,  по одной из формул

    `a_n = (v^2)/R = v omega = ((2pi)/(T))^2 R`.

    Естественное обобщение этого результата для движения по произвольной криволинейной траектории состоит в следующем: неравномерное движении по произвольной криволинейной траектории может быть представлено как последовательность перемещений по элементарным дужкам окружностей, радиус каждой из которых можно вычислять по формуле `R = (v^2)/(a_n)`. Эту величину называют  радиусом кривизны траектории в рассматриваемой точке.

    Для решения задачи воспользуемся соотношениями `R = (v^2)/(a_n)`,  `omega = (a_n)/v`.

    В  малой окрестности точки старта `v = v_0`, нормальное ускорение `a_n` есть проекция ускорения свободного падения `vec g` на нормаль к траектории (рис. 3)

    `a_n = g * cos alpha`.

    Из приведённых соотношений находим радиус кривизны траектории в малой окрестности точки старта

    `R = (v_0^2)/(g cos alpha) = (20^2)/(10 * 0,5) = 80  sf"м"`,

    и угловую скорость, с которой в этой окрестности вращается вектор скорости,

    `omega = (g cos alpha)/(v_0)`.

    Тогда время поворота вектора скорости на угол `varphi = pi/(180) ~~ 0,017` рад будет равно 

    `tau = varphi/omega = (varphi * v_0)/(g * cos alpha) = (0,017 * 20)/(10 * 0,5) ~~ 0,07  sf"с"`.





  • §3. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон:

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон: 

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`.

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`.

    Действительно, если масса тела остаётся неизменной, то

    `Delta vec p = Delta (m vec v) = m Delta vec v = vec F Delta t`.

    С учётом равенства `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности приведённых формулировок второго закона.

    Далее в Задании представлены задачи, иллюстрирующие применение законов Ньютона и их следствий: теорем об изменении импульса и энергии в механике.

    3-й закон:

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1. силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2. эти силы равны по величине,

    3. они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`.

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта,

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы,

    составить уравнение динамики,

    перейти к проекциям приращения импульса и сил на те или иные направления,

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 4

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени `t_1 = 10  sf"с"` горизонтальную силу величиной `F = 5  sf"H"`. После прекращения действия силы тело движется до остановки `t_2 = 40  sf"с"`. Определите величину `F_sf"тр"` силы трения скольжения, считая её постоянной.

    Решение

    На рис. 4 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    `Delta p_x = (F - F_sf"тр" ) Delta t`

    и в процессе торможения `(F = 0)`

    `Delta p_x =- F_sf"тр" Delta t`.

    Просуммируем все приращения импульса тела от старта до остановки

    `sum Delta p_x = sum_(0 <= t <=t_1) (F - F_sf"тр" )Delta t + sum_(t_1 <= t <= t_1 + t_2) (- F_sf"тр") Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    `p_(x  sf"конечн") - p_(x  sf"начальн") = (F - F_sf"тр") t_1 + (- F_sf"тр") t_2`. 

    С учётом равенств `p_(x  sf"конечн") = 0`, и `p_(x  sf"начальн") = 0` независимости сил от времени приходим к ответу на вопрос задачи:

    `F_sf"тр" = (t_1)/(t_1 + t_2) F = (10)/(10 + 40) * 5 = 1  sf"H"`.

    На ЕГЭ и олимпиадах в вузах РФ регулярно предлагаются задачи динамики, в которых наряду с привычными для школьника силой тяжести, силой Архимеда и т. д., на тело действует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 5

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v_0 = 10  sf"м/с"`, упал на землю. В момент падения скорость меньше начальной по величине на `delta = 0,3`. Найдите продолжительность `T` полёта мяча. Силу сопротивления считайте пропорциональной скорости `vec F =- k vec v`, `k > 0`.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы

    `m * Delta vec v = (m vec g - k vec v) * Delta t`,

    переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем

    `m * Delta v_y =- mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде,

    `m * Delta v_y =- mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`

    `m * (sum Delta v_y) =- mg * (sum Delta t) - k * (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) =- mg(T - 0) - k(y(T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое `y(T) - y(0) = 0`.

    Тогда `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha =- mgT`.

    Отсюда находим продолжительность полёта мяча 

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях

    Пример 6

    Кубик, движущийся поступательно со скоростью `v` (рис. 5) по гладкой горизонтальной поверхности, испытывает соударение с  шероховатой  вертикальной  стенкой. Коэффициент трения скольжения кубика по стенке `mu` и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика  в  результате  соударения не изменяется по величине.

                              

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 6. По второму закону Ньютона

    `Delta vec p = (m vec g + vec(N_sf"Г") + vec(F_sf"тр") + vec(N_sf"В")) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x =- F_sf"тр" Delta t`,  `Delta p_y = N_sf"В" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"В" Delta t`.

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"В"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"В" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для  этого  просуммируем  приращения  `Delta p_x =- F_sf"тр" Delta t =- mu N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha =- sum_(0 <= t <= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.

    Отсюда `v_x (tau) = v (cos alpha - 2 mu sin alpha)`.

    Далее считая, `v_x (tau) > 0`,  получаем `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.

    Далее рассмотрим две характерные задачи динамики равномерного движения по окружности.

    Пример 7

    Массивный шарик, подвешенный на лёгкой нити, движется равномерно по окружности в горизонтальной плоскости. Расстояние  от точки подвеса нити до плоскости, в которой происходит движение, равно `H`. Найдите период `T` обращения шарика.

    Решение

    Введём обозначения: `L` - длина нити, `alpha` - угол, образуемый нитью с вертикалью, `r = L sin alpha` - радиус окружности (рис. 7), по которой движется шарик со скоростью `v`.

    Заметим,  что `H = L cos alpha`. Обратимся к динамике. На шарик действуют сила тяжести `m vec g` и сила натяжения `vec F` нити. Эти силы сообщают шарику направленное к центру окружности нормальное ускорение, по величине равное `a = (4 pi^2)/(T^2) r`.

    В инерциальной системе отсчёта основным уравнением динамики материальной точки является второй закон Ньютона `m vec a = vec F + m vec g`. При таком движении сумма сил, так же как и ускорение, в любой момент времени направлена  к центру окружности. Тогда, переходя  в уравнении движения к скалярной форме записи, удобно перейти не к проекциям сил и ускорения на оси `Ox`, `Oy` инерциальной системы отсчёта, а к проекциям сил и ускорения на два направления, а именно: на подвижное направление -направление внутренней нормали к траектории, считая положительным направление к центру  окружности,

    `m * (4 pi^2)/(T^2) r = F sin alpha`,

    и на вертикаль `0 = F cos alpha - mg`.

    Исключив из этих соотношений силу натяжения,  приходим к ответу

    `T = 2 pi sqrt(H/g)`.

    Период обращения конического маятника зависит только от расстояния от точки подвеса до плоскости движения.

    Пример 8

    Маленький деревянный шарик прикреплён с помощью нерастяжимой нити длиной `l = 30  sf"см"` ко дну цилиндрического сосуда с водой. Расстояние от центра дна до точки закрепления нити `r = 20  sf"см"`. Сосуд раскручивают вокруг вертикальной оси, проходящей через  центр дна. При какой угловой скорости вращения нить отклонится от вертикали на угол `alpha = 30^@`?   

    Решение

    Нить с шариком отклонится к оси вращения. Действительно, на шарик будут действовать три силы: сила тяжести `m vec g`, сила натяжения `vec T` нити  и сила Архимеда `vec F` (рис. 8).

    Найдём эту силу. Обозначим объём шарика `V`, плотность дерева, из которого изготовлен шарик `rho_sf"ш"`, плотность воды `rho_sf"в"`, и рассмотрим движение жидкости до погружения в неё шарика. Любой элементарный объём  воды равномерно движется по окружности в горизонтальной плоскости. Следовательно, вертикальная составляющая суммы сил давления (силы Архимеда) `F_(A,z)` уравновешивает  силу  тяжести,  действующую на жидкость  в  рассматриваемом объёме, горизонтальная составляющая `F_(A,r)` сообщает этой жидкости центростремительное ускорение. При замещении жидкости шариком эти составляющие не изменяются. Тогда вертикальная составляющая силы Архимеда, действующей на шарик, по величине равна `F_(A,z) = rho_sf"в" Vg`, а направленная к оси вращения составляющая силы Архимеда по величине равна `F_(A,r) = rho_sf"в" V omega^2 (r - l sin alpha)`. Под действием приложенных сил шарик движется равномерно по окружности радиуса `(r - l sin alpha)` в горизонтальной плоскости. Из второго закона Ньютона `m vec a = m vec g + vec T + vec F`, переходя к проекциям сил и ускорения на вертикальную ось, находим

    `rho _sf"в" Vg - rho_sf"ш" Vg - T cos alpha = 0`,

    проектируя силы и ускорения в горизонтальной плоскости на нормальное направление, получаем

    `rho _sf"ш" V omega^2 (r - l sin alpha) = rho_sf"в" V omega^2 (r - l sin alpha) - T sin alpha`.

    Исключая `T` из двух последних соотношений, находим искомую угловую скорость

    `omega = sqrt((g  bbb"tg"  alpha)/(r - l sin alpha)) ~~ 10,7 sf"с"^-1`.

  • §4. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

    Рассмотрим систему материальных точек массами `m_1`, `m_2``...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2``...`. Импульсом `vecP_("c")` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих  систему, `vecP_("c") = vecp_1 + vecp_2 + ...`.

    Найдём скорость `(Delta vecP_("c"))/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vecF_1` внешние по отношению к системе тела и внутренняя сила `vecf_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vecF_2`, и внутренняя сила `vecf_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

    `(Delta vecP_("c"))/(Delta t) = (Delta vecp_1)/(Delta t) + (Delta vecp_2)/(Delta t) = (vecF_1 + vecf_(12)) + (vecF_2 + vecf_(21))`.

    По третьему закону Ньютона `vecf_(12) + vecf_(21) = vec 0`,  и мы приходим к теореме об  изменении импульса системы  материальных  точек

    `(Delta vecP_("c"))/(Delta t) = vecF_1 + vecF_2`,

    скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

    Из приведённого доказательства следует, что третий закон Ньютона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких других внешних сил. В этом - его более глубокое физическое содержание.

    Пример 9

    Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по  поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 9), с которыми клин действует на опору.


    Решение

    По третьему закону Ньютона искомые силы связаны с силой трения `vecR_1 =- vecF_("тр"` и силой нормальной реакции `vecR_2 =- vecN_("г")`, действующими на клин со стороны опоры (рис. 10). Силы `vec(F_sf"тр")` и `vec(N_sf"г")`, наряду с силами тяжести, являются внешними по отношению к системе «клин + брусок»  и  определяют скорость  изменения импульса этой системы.

              

    Импульс `vecP_("c")` системы направлен по скорости бруска и по величине  равен  произведению массы бруска на его скорость `vecP_("c") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 11):

    `(Delta vecp)/(Delta t) = m vec g + vec N + vec(f_sf"тр"`.

    Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N`, получаем

    `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg(sin alpha - mu cos alpha)`.

    По теореме об изменении импульса системы «клин + брусок»

    `(Delta vecP_("c"))/(Delta t) = M vec g + m vec g + vecN_("г") + vecF_("тр")`.

    Переходя в последнем равенстве к проекциям на горизонтальное  и вертикальное  направления с учётом 

    Pc,x~=pxcosαP_{c,\widetilde x}=p_x\cos\alpha,  Pc,y~=-pxsinαP_{c,\widetilde y}=-p_x\sin\alpha,

    получаем

    Pc,x~t=pxcosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

    Pc,y~t=-pxsinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

    Отсюда находим искомые силы

    `R_1 = F_sf"тр" = mg(sin alpha - mu cos alpha) cos alpha`,

    `R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha) sin alpha`.



  • §5. Сохранение импульса системы материальных точек

    Из теоремы об изменении  импульса системы  материальных  точек `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i` следует сохранение импульса или его проекций в следующих случаях:

    если  `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

    если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(c,x) = "const"`.  

    Наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

    `Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

    следует `Delta vecP_("c") ~~ vec 0`, т. е. сохранение импульса на рассматриваемом интер­вале времени `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

    Пример 10

    Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетевшее из пушки ядро садится барон Мюнхгаузен, масса которого `5m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

    Решение

    Вы, конечно, догадались, что эта задача иллюстрирует последний из перечисленных случаев сохранения импульса системы. В процессе «посадки» барона на ядро на систему «ядро + барон» действуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что импульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `m vecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

    `m vecv_0 = 6m vecv_1`,

    так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря, барону предстоит пройти пешком!

    Пример 11

    На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится  соломинка?

    Решение

    Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

    `Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

    здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции  равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

    `M vecv_1 + m vecv_2 = vec 0`.

    Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей `vecv_2 = vecv_1 + vec u`, здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим `v_(2,x) = v_(1,x) + u_(x')`.

    С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x')) = 0`, т. е. в любой момент времени  

    `v_(1,x) =- m/(M + m) u_(x')`.  

    Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x' = u_(x') Delta t` - жука относительно соломинки, связаны соотношением `Delta x_1 =- m/(M + m) Delta x'`.

    Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи 

    `S = m/(m + M) L`.

    Пример 12

    Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 12). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                    

    Решение

    Рассмотрим систему тел «клин + грузы» (рис. 13).

    На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил: тяжести и нормальной реакции горизонтальной опоры

    `Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

    Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

    `(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`,

    здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

    `(2m + 3m) v_(x,sf"к") + m(v_(x,sf"к") + u_(x')) = 0`.

    Отсюда находим связь проекций скорости

    `v_(x,sf"к") = - m/(6m) u_(x') = - u_(x')/6`

    и  элементарных перемещений:

    `Delta x_sf"к" =- (Delta x')/6`,

    где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи

    `S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

    Пример 13

    По клину массой `M`, находящемуся на гладкой горизонтальной плоскости, скользит шайба массой `m`. Гладкая наклонная плоскость клина составляет с горизонтом угол `alpha`.  Определите величину  `a_1` ускорения  клина.

    Решение

    Для определения ускорения клина рассмотрим движение каждого  из  тел. Силы,  приложенные к  телам,  указаны  на рис. 14.

              

    Запишем второй закон Ньютона для клина `M veca_1 = M vec g + vec P + vec R` и для шайбы `m veca_2 = m vec g + vec N`. Переходя к проекциям сил и ускорений на оси ЛСО с учётом `vec P =- vec N` получаем    

    `Ma_(1x) = N sin alpha`,  `ma_(2x) =- N sin alpha`,  `ma_(2y) =- mg + N cos alpha`.

    Скорость `vecv_2`  шайбы в ЛСО, скорость `vec u` шайбы относительно клина и скорость `vecv_1` клина связаны законом сложения скоростей  `vecv_2 = vecv_1 + vec u`. Дифференцируя это равенство по времени находим связь соответствующих ускорений `veca_2 = veca_1 + veca_("отн")`. Из треугольника ускорений (рис. 15) следует

    `bbb"tg" alpha = (a_(2y))/(a_(2x) - a_(1x))`.

    Подставляя в последнее равенство выражения для проекций ускорения шайбы

    `a_(2x) =- M/m a_(1x)`   и   `a_(2y) =- g + a_(1x) M/m "ctg"  alpha`,

    после несложных преобразований приходим к ответу на вопрос задачи

     `a_(1x) = 1/2 (m sin 2 alpha)/(M + m sin^2 alpha) g`.

    Рассмотренные примеры подчёркивают важную роль законов сохранения.

    Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона, и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.


  • §6. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Неупругие столкновения

    Пример 14

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса `mv = (m + M) u`. По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

    `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)` `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 15

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса   `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`,  здесь учтено, что направление скорости `vecv_1` налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`, решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,   `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 16

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^'` и `vecv_2^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 16).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется 

    `vecp_1 + vecp_2 = vecp_1^' + vecp_2^'`,      

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^' = m_1 vecv_1^'`, `vecp_2^' = m_2 vecv_2^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения

     `vecv_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^'` и `vecv_2^'` образуют с положительным направлением оси `Ox`:

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).