Все статьи » ЗФТШ Физика

Статьи

  • §6. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Неупругие столкновения

    Пример 14

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса `mv = (m + M) u`. По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

    `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)` `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 15

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса   `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`,  здесь учтено, что направление скорости `vecv_1` налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`, решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,   `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 16

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^'` и `vecv_2^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 16).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется 

    `vecp_1 + vecp_2 = vecp_1^' + vecp_2^'`,      

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^' = m_1 vecv_1^'`, `vecp_2^' = m_2 vecv_2^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения

     `vecv_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^'` и `vecv_2^'` образуют с положительным направлением оси `Ox`:

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).

  • §7. Теорема об изменении кинетической энергии материальной точки и следствия

    Напомним вывод этой теоремы. По второму закону Ньютона

    `m Delta vec v = vec F Delta t`.

    Умножим обе части этого равенства скалярно на `vec v`, получим

    `m (vec v * Delta vec v) = (vec F * vec v Delta t)`.

    Это соотношение устанавливает равенство `Delta K = Delta A` на каждом элементарном перемещении приращения кинетической энергии

    `Delta K = m ((vec v + Delta vec v)^2)/2 - m ((vec v)^2)/2 ~~ m(vec v * Delta vec v)`

    и работы равнодействующей

    `Delta A = (vec F * Delta vec r) = (vec F * vec v Delta t)`

    на этом перемещении.

    Суммируя такие равенства вдоль произвольной траектории,  приходим к теореме об изменении кинетической энергии на конечных перемещениях:

    Теорема

    На любых перемещениях приращение кинетической энергии материальной точки равно сумме работ всех сил

    `K_2 - K_1 = sum_i A_i`.

    Если среди сил есть потенциальные, то работа такой силы традиционно принимается равной взятому с обратным знаком приращению потенциальной энергии A=-П2-П1A=-\left(П_2-П_1\right).

    Из этих соотношений получаем теорему об изменении полной механической энергии (суммы кинетической и потенциальной энергий) материальной точки

    Теорема

    П2+K2-П1+K1=\left(П_2+K_2\right)-\left(П_1+K_1\right)=`sum_i A_(i  sf"непотенц")`,

    т. е. на любых перемещениях приращение полной механической энергии материальной точки равно сумме работ всех не потенциальных сил.

    Отсюда следует: если не потенциальные силы отсутствуют или их работа равна нулю, то полная механическая энергия материальной точки, сохраняется.

    Это утверждение -  закон сохранения полной механической энергии материальной точки.

    Пример 17

    На заснеженном склоне с углом наклона `alpha` к горизонту коэффициент трения скольжения лыжника на высотах меньших `h` равен `mu_1 (mu_1 >  "tg"  alpha)`, на больших высотах коэффициент трения скольжения лыжника равен `mu_2 (mu_2 < "tg"  alpha)`. С какой высоты `H` следует стартовать лыжнику с нулевой начальной скоростью, чтобы доехать до основания склона с нулевой конечной скоростью?

    Решение

    По условию `mu_2 < "tg"  alpha`, `mu_1 > "tg" alpha`. Тогда при спуске лыжника на верхнем участке склона `F_(sf"тр"2) = mu_2 mg cos alpha < mg sin alpha`, лыжник движется равноускорено. На нижнем участке склона

    `F_(sf"тр"1) = mu_1 mg cos alpha > mg sin alpha`,

    лыжник движется равнозамедленно. При движении лыжника по склону от старта до финиша:

    приращение потенциальной энергии, отсчитанной от нуля у основания склона, равно П2-П1=-mgHП_2-П_1=-mgH,

    приращение кинетической энергии  `K_2 - K_1 = 0`, работа силы трения скольжения

    `A_12 =- mu_2 mg cos alpha * (H - h)/(sin alpha) - mu_1 mg cos alpha h/(sin alpha) =`

    `=- (mg)/("tg"  alpha) (mu_2 H + (mu_1 - mu_2) h)`.

    По теореме об изменении полной механической энергии

    K2+П2-K1+П1=A12\left(K_2+П_2\right)-\left(K_1+П_1\right)=A_{12}.

    В рассматриваемом случае `- mgH =- (mg)/("tg"  alpha) (mu_2 H + (mu_1 - mu_2 )h)`.

    Отсюда `H = (mu_1 - mu_2)/("tg"  alpha - mu_2) h`.

  • §5. Сохранение импульса системы материальных точек

    Из теоремы об изменении  импульса системы  материальных  точек `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i` следует сохранение импульса или его проекций в следующих случаях:

    если  `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

    если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(c,x) = "const"`.  

    Наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

    `Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

    следует `Delta vecP_("c") ~~ vec 0`, т. е. сохранение импульса на рассматриваемом интер­вале времени `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

    Пример 10

    Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетевшее из пушки ядро садится барон Мюнхгаузен, масса которого `5m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

    Решение

    Вы, конечно, догадались, что эта задача иллюстрирует последний из перечисленных случаев сохранения импульса системы. В процессе «посадки» барона на ядро на систему «ядро + барон» действуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что импульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `m vecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

    `m vecv_0 = 6m vecv_1`,

    так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря, барону предстоит пройти пешком!

    Пример 11

    На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится  соломинка?

    Решение

    Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

    `Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

    здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции  равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

    `M vecv_1 + m vecv_2 = vec 0`.

    Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей `vecv_2 = vecv_1 + vec u`, здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим `v_(2,x) = v_(1,x) + u_(x')`.

    С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x')) = 0`, т. е. в любой момент времени  

    `v_(1,x) =- m/(M + m) u_(x')`.  

    Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x' = u_(x') Delta t` - жука относительно соломинки, связаны соотношением `Delta x_1 =- m/(M + m) Delta x'`.

    Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи 

    `S = m/(m + M) L`.

    Пример 12

    Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 12). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                    

    Решение

    Рассмотрим систему тел «клин + грузы» (рис. 13).

    На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил: тяжести и нормальной реакции горизонтальной опоры

    `Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

    Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

    `(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`,

    здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

    `(2m + 3m) v_(x,sf"к") + m(v_(x,sf"к") + u_(x')) = 0`.

    Отсюда находим связь проекций скорости

    `v_(x,sf"к") = - m/(6m) u_(x') = - u_(x')/6`

    и  элементарных перемещений:

    `Delta x_sf"к" =- (Delta x')/6`,

    где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи

    `S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

    Пример 13

    По клину массой `M`, находящемуся на гладкой горизонтальной плоскости, скользит шайба массой `m`. Гладкая наклонная плоскость клина составляет с горизонтом угол `alpha`.  Определите величину  `a_1` ускорения  клина.

    Решение

    Для определения ускорения клина рассмотрим движение каждого  из  тел. Силы,  приложенные к  телам,  указаны  на рис. 14.

              

    Запишем второй закон Ньютона для клина `M veca_1 = M vec g + vec P + vec R` и для шайбы `m veca_2 = m vec g + vec N`. Переходя к проекциям сил и ускорений на оси ЛСО с учётом `vec P =- vec N` получаем    

    `Ma_(1x) = N sin alpha`,  `ma_(2x) =- N sin alpha`,  `ma_(2y) =- mg + N cos alpha`.

    Скорость `vecv_2`  шайбы в ЛСО, скорость `vec u` шайбы относительно клина и скорость `vecv_1` клина связаны законом сложения скоростей  `vecv_2 = vecv_1 + vec u`. Дифференцируя это равенство по времени находим связь соответствующих ускорений `veca_2 = veca_1 + veca_("отн")`. Из треугольника ускорений (рис. 15) следует

    `bbb"tg" alpha = (a_(2y))/(a_(2x) - a_(1x))`.

    Подставляя в последнее равенство выражения для проекций ускорения шайбы

    `a_(2x) =- M/m a_(1x)`   и   `a_(2y) =- g + a_(1x) M/m "ctg"  alpha`,

    после несложных преобразований приходим к ответу на вопрос задачи

     `a_(1x) = 1/2 (m sin 2 alpha)/(M + m sin^2 alpha) g`.

    Рассмотренные примеры подчёркивают важную роль законов сохранения.

    Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона, и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.


  • §3. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон:

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон: 

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`.

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`.

    Действительно, если масса тела остаётся неизменной, то

    `Delta vec p = Delta (m vec v) = m Delta vec v = vec F Delta t`.

    С учётом равенства `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности приведённых формулировок второго закона.

    Далее в Задании представлены задачи, иллюстрирующие применение законов Ньютона и их следствий: теорем об изменении импульса и энергии в механике.

    3-й закон:

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1. силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2. эти силы равны по величине,

    3. они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`.

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта,

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы,

    составить уравнение динамики,

    перейти к проекциям приращения импульса и сил на те или иные направления,

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 4

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени `t_1 = 10  sf"с"` горизонтальную силу величиной `F = 5  sf"H"`. После прекращения действия силы тело движется до остановки `t_2 = 40  sf"с"`. Определите величину `F_sf"тр"` силы трения скольжения, считая её постоянной.

    Решение

    На рис. 4 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    `Delta p_x = (F - F_sf"тр" ) Delta t`

    и в процессе торможения `(F = 0)`

    `Delta p_x =- F_sf"тр" Delta t`.

    Просуммируем все приращения импульса тела от старта до остановки

    `sum Delta p_x = sum_(0 <= t <=t_1) (F - F_sf"тр" )Delta t + sum_(t_1 <= t <= t_1 + t_2) (- F_sf"тр") Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    `p_(x  sf"конечн") - p_(x  sf"начальн") = (F - F_sf"тр") t_1 + (- F_sf"тр") t_2`. 

    С учётом равенств `p_(x  sf"конечн") = 0`, и `p_(x  sf"начальн") = 0` независимости сил от времени приходим к ответу на вопрос задачи:

    `F_sf"тр" = (t_1)/(t_1 + t_2) F = (10)/(10 + 40) * 5 = 1  sf"H"`.

    На ЕГЭ и олимпиадах в вузах РФ регулярно предлагаются задачи динамики, в которых наряду с привычными для школьника силой тяжести, силой Архимеда и т. д., на тело действует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 5

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v_0 = 10  sf"м/с"`, упал на землю. В момент падения скорость меньше начальной по величине на `delta = 0,3`. Найдите продолжительность `T` полёта мяча. Силу сопротивления считайте пропорциональной скорости `vec F =- k vec v`, `k > 0`.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы

    `m * Delta vec v = (m vec g - k vec v) * Delta t`,

    переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем

    `m * Delta v_y =- mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде,

    `m * Delta v_y =- mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`

    `m * (sum Delta v_y) =- mg * (sum Delta t) - k * (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) =- mg(T - 0) - k(y(T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое `y(T) - y(0) = 0`.

    Тогда `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha =- mgT`.

    Отсюда находим продолжительность полёта мяча 

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях

    Пример 6

    Кубик, движущийся поступательно со скоростью `v` (рис. 5) по гладкой горизонтальной поверхности, испытывает соударение с  шероховатой  вертикальной  стенкой. Коэффициент трения скольжения кубика по стенке `mu` и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика  в  результате  соударения не изменяется по величине.

                              

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 6. По второму закону Ньютона

    `Delta vec p = (m vec g + vec(N_sf"Г") + vec(F_sf"тр") + vec(N_sf"В")) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x =- F_sf"тр" Delta t`,  `Delta p_y = N_sf"В" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"В" Delta t`.

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"В"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"В" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для  этого  просуммируем  приращения  `Delta p_x =- F_sf"тр" Delta t =- mu N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha =- sum_(0 <= t <= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.

    Отсюда `v_x (tau) = v (cos alpha - 2 mu sin alpha)`.

    Далее считая, `v_x (tau) > 0`,  получаем `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.

    Далее рассмотрим две характерные задачи динамики равномерного движения по окружности.

    Пример 7

    Массивный шарик, подвешенный на лёгкой нити, движется равномерно по окружности в горизонтальной плоскости. Расстояние  от точки подвеса нити до плоскости, в которой происходит движение, равно `H`. Найдите период `T` обращения шарика.

    Решение

    Введём обозначения: `L` - длина нити, `alpha` - угол, образуемый нитью с вертикалью, `r = L sin alpha` - радиус окружности (рис. 7), по которой движется шарик со скоростью `v`.

    Заметим,  что `H = L cos alpha`. Обратимся к динамике. На шарик действуют сила тяжести `m vec g` и сила натяжения `vec F` нити. Эти силы сообщают шарику направленное к центру окружности нормальное ускорение, по величине равное `a = (4 pi^2)/(T^2) r`.

    В инерциальной системе отсчёта основным уравнением динамики материальной точки является второй закон Ньютона `m vec a = vec F + m vec g`. При таком движении сумма сил, так же как и ускорение, в любой момент времени направлена  к центру окружности. Тогда, переходя  в уравнении движения к скалярной форме записи, удобно перейти не к проекциям сил и ускорения на оси `Ox`, `Oy` инерциальной системы отсчёта, а к проекциям сил и ускорения на два направления, а именно: на подвижное направление -направление внутренней нормали к траектории, считая положительным направление к центру  окружности,

    `m * (4 pi^2)/(T^2) r = F sin alpha`,

    и на вертикаль `0 = F cos alpha - mg`.

    Исключив из этих соотношений силу натяжения,  приходим к ответу

    `T = 2 pi sqrt(H/g)`.

    Период обращения конического маятника зависит только от расстояния от точки подвеса до плоскости движения.

    Пример 8

    Маленький деревянный шарик прикреплён с помощью нерастяжимой нити длиной `l = 30  sf"см"` ко дну цилиндрического сосуда с водой. Расстояние от центра дна до точки закрепления нити `r = 20  sf"см"`. Сосуд раскручивают вокруг вертикальной оси, проходящей через  центр дна. При какой угловой скорости вращения нить отклонится от вертикали на угол `alpha = 30^@`?   

    Решение

    Нить с шариком отклонится к оси вращения. Действительно, на шарик будут действовать три силы: сила тяжести `m vec g`, сила натяжения `vec T` нити  и сила Архимеда `vec F` (рис. 8).

    Найдём эту силу. Обозначим объём шарика `V`, плотность дерева, из которого изготовлен шарик `rho_sf"ш"`, плотность воды `rho_sf"в"`, и рассмотрим движение жидкости до погружения в неё шарика. Любой элементарный объём  воды равномерно движется по окружности в горизонтальной плоскости. Следовательно, вертикальная составляющая суммы сил давления (силы Архимеда) `F_(A,z)` уравновешивает  силу  тяжести,  действующую на жидкость  в  рассматриваемом объёме, горизонтальная составляющая `F_(A,r)` сообщает этой жидкости центростремительное ускорение. При замещении жидкости шариком эти составляющие не изменяются. Тогда вертикальная составляющая силы Архимеда, действующей на шарик, по величине равна `F_(A,z) = rho_sf"в" Vg`, а направленная к оси вращения составляющая силы Архимеда по величине равна `F_(A,r) = rho_sf"в" V omega^2 (r - l sin alpha)`. Под действием приложенных сил шарик движется равномерно по окружности радиуса `(r - l sin alpha)` в горизонтальной плоскости. Из второго закона Ньютона `m vec a = m vec g + vec T + vec F`, переходя к проекциям сил и ускорения на вертикальную ось, находим

    `rho _sf"в" Vg - rho_sf"ш" Vg - T cos alpha = 0`,

    проектируя силы и ускорения в горизонтальной плоскости на нормальное направление, получаем

    `rho _sf"ш" V omega^2 (r - l sin alpha) = rho_sf"в" V omega^2 (r - l sin alpha) - T sin alpha`.

    Исключая `T` из двух последних соотношений, находим искомую угловую скорость

    `omega = sqrt((g  bbb"tg"  alpha)/(r - l sin alpha)) ~~ 10,7 sf"с"^-1`.

  • §4. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

    Рассмотрим систему материальных точек массами `m_1`, `m_2``...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2``...`. Импульсом `vecP_("c")` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих  систему, `vecP_("c") = vecp_1 + vecp_2 + ...`.

    Найдём скорость `(Delta vecP_("c"))/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vecF_1` внешние по отношению к системе тела и внутренняя сила `vecf_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vecF_2`, и внутренняя сила `vecf_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

    `(Delta vecP_("c"))/(Delta t) = (Delta vecp_1)/(Delta t) + (Delta vecp_2)/(Delta t) = (vecF_1 + vecf_(12)) + (vecF_2 + vecf_(21))`.

    По третьему закону Ньютона `vecf_(12) + vecf_(21) = vec 0`,  и мы приходим к теореме об  изменении импульса системы  материальных  точек

    `(Delta vecP_("c"))/(Delta t) = vecF_1 + vecF_2`,

    скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

    Из приведённого доказательства следует, что третий закон Ньютона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких других внешних сил. В этом - его более глубокое физическое содержание.

    Пример 9

    Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по  поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 9), с которыми клин действует на опору.


    Решение

    По третьему закону Ньютона искомые силы связаны с силой трения `vecR_1 =- vecF_("тр"` и силой нормальной реакции `vecR_2 =- vecN_("г")`, действующими на клин со стороны опоры (рис. 10). Силы `vec(F_sf"тр")` и `vec(N_sf"г")`, наряду с силами тяжести, являются внешними по отношению к системе «клин + брусок»  и  определяют скорость  изменения импульса этой системы.

              

    Импульс `vecP_("c")` системы направлен по скорости бруска и по величине  равен  произведению массы бруска на его скорость `vecP_("c") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 11):

    `(Delta vecp)/(Delta t) = m vec g + vec N + vec(f_sf"тр"`.

    Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N`, получаем

    `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg(sin alpha - mu cos alpha)`.

    По теореме об изменении импульса системы «клин + брусок»

    `(Delta vecP_("c"))/(Delta t) = M vec g + m vec g + vecN_("г") + vecF_("тр")`.

    Переходя в последнем равенстве к проекциям на горизонтальное  и вертикальное  направления с учётом 

    Pc,x~=pxcosαP_{c,\widetilde x}=p_x\cos\alpha,  Pc,y~=-pxsinαP_{c,\widetilde y}=-p_x\sin\alpha,

    получаем

    Pc,x~t=pxcosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

    Pc,y~t=-pxsinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

    Отсюда находим искомые силы

    `R_1 = F_sf"тр" = mg(sin alpha - mu cos alpha) cos alpha`,

    `R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha) sin alpha`.



  • §2. Кинематика

    Рассмотрение задач описания движения традиционно начинается с кинематики. Так называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Начнём с равномерного движения.

    Пример 1

    Корабль `A` и торпеда `B` в некоторый момент времени находятся на расстоянии `l = 1  sf"км"`  друг от друга (см. рис. 1). Скорость корабля  `v_1 = 10  sf"м/с"`, угол `alpha = 60^@`. Скорость торпеды `v_2 = 20  sf"м/с"`. При каком угле  `beta` торпеда попадёт в цель?

    Решение

    По условию цель и торпеда в лабораторной системе отсчёта движутся равномерно, их радиусы векторы зависят от времени по закону

    `vecr_1 (t) = vecr_(01) + vecv_1 t`, 

    `vecr_2 (t) = vecr_(02) + vecv_2 t`

    Перейдём в систему отсчёта, связанную с кораблём (точка `A`) и движущуюся поступательно относительно лаборатории. В этой системе положение торпеды (точки `B`)  в любой момент времени определяется вектором

    `vec rho (t) = vecr_(2)(t) - vecr_(1) (t) = (vecr_(02) - vecr_(01)) + (vecv_2 - vecv_1)t`.

    Отсюда следует, что  в подвижной системе торпеда движется  по прямой, проходящей через её начальное положение, определяемое вектором `vecrho_0 = vecr_(02) - vecr_(01)`, а направляющим вектором прямой является относительная скорость `vec u = vecv_2 - vecv_1`. Такая прямая проходит через начало отсчёта подвижной системы (торпеда попадает в цель) в том случае, когда векторы `vecrho_0` и `vec u` антипараллельны. В рассматриваемой задаче это выполняется при равенстве проекций скоростей `vecv_1` и `vecv_2` на перпендикуляр к `vecrho_0`, т. е. к  `AB`,  `v_1 sin alpha = v_2 sin beta`.

    Отсюда `sin beta = (v_1)/(v_2) sin alpha = (10)/(20) sin 60^@ = (sqrt3)/4 ~~ 0,43`,   `beta ~~25,5^@`.

    Обратимся к равнопеременному движению. Как известно, в этом случае зависимости скорости и перемещения от времени имеют вид

      `vec v (t) = vecv_0 + vec a t`,   `vec r (t) = vecr_0 + vecv_0 t + (vec a t^2)/2`.

    Среди всевозможных случаев равнопеременного движения особое место занимает движение под действием гравитационных сил - свободное падение тел в однородном поле тяжести с постоянным ускорением `vec a = vec g`. Из второго соотношения следует, что при свободном падении вектор перемещения `vec r (t) - vec(r_0)` материальной точки за время от `0` до `t` равен сумме векторов `vecv_0 t` и `(vec g t^2)/2`. Это означает, что движение тела, брошенного под углом к горизонту, есть суперпозиция равномерного прямолинейного движения со скоростью  `vecv_0` и свободного падения в однородном поле тяжести `vec g` с нулевой начальной скоростью.

    Пример 2

    Пушка расположена у основания склона, образующего с горизонтом угол `alpha = 30^@`. Под каким углом `beta` к склону следует произвести выстрел с начальной скоростью `v_0 = 100  sf"м/с"` так, чтобы дальность полёта снаряда вдоль склона была наибольшей? Найдите эту максимальную дальность `S_max`.

    Здесь и далее в Задании ускорение свободного падения `g = 10  sf"м/с"^2`. Сопротивление воздуха пренебрежимо мало.

    Решение

    Перемещение снаряда  за время `T` полёта равно

    `vec r (T) = vecv_0 T + (vec g T^2)/2`,

    (считаем `vecr_0 = vec 0`).  Изобразим эти векторы на рисунке 2.

    Проекции векторов `vecv_0 T` и `(vec g T^2)/2` на направление нормали к склону   равны по величине

    `v_0 T sin beta = (gT^2)/2 cos alpha`.

    Отсюда находим продолжительность `T` полёта мяча `T = (2 v_0)/(g) (sin beta)/(cos alpha)`. Дальность `S` полёта равна алгебраической сумме проекций векторов `vecv_0 T` и `(vec g T^2)/2`  на  склон `S = v_0 T cos beta - (gT^2)/2 sin alpha`.

    С учётом выражения для времени полёта последнее соотношение перепишем в виде

    `S = (v_0^2)/(g cos^2 alpha) (sin (alpha + 2 beta) - sin alpha)`.

    Отсюда следует, что наибольшей дальности соответствует такой угол `beta`, при котором множитель в скобках в последнем соотношении принимает наибольшее значение, т. е.

    `sin (alpha + 2 beta) = 1`,  `alpha + 2 beta = pi/2`,  `beta = 1/2 (pi/2 - alpha) = 1/2 (pi/2 - pi/6 ) = pi/6`.

    Отсюда следует, что выстрел следует производить по биссектрисе угла между склоном и вертикалью. В этом дальность полёта наибольшая и равна

    `S_max = (v_0^2 (1 - sin alpha))/(g cos^2 alpha) ~~ 670 sf"м"`.

    Пример 3

    Камень брошен со скоростью `v_0 = 20  sf"м/с"` под углом `alpha = 60^@` к горизонту. Найдите радиус `R` кривизны траектории в окрестности точки старта. Через какое время `tau` после старта вектор скорости повернётся на  `varphi = 1^@`?

    Решение

    Известно, что движение точки по окружности с постоянной  по величине скоростью есть движение ускоренное, при этом вектор ускорения в  любой момент  времени направлен к центру окружности, а его величина постоянна и определяется, например,  по одной из формул

    `a_n = (v^2)/R = v omega = ((2pi)/(T))^2 R`.

    Естественное обобщение этого результата для движения по произвольной криволинейной траектории состоит в следующем: неравномерное движении по произвольной криволинейной траектории может быть представлено как последовательность перемещений по элементарным дужкам окружностей, радиус каждой из которых можно вычислять по формуле `R = (v^2)/(a_n)`. Эту величину называют  радиусом кривизны траектории в рассматриваемой точке.

    Для решения задачи воспользуемся соотношениями `R = (v^2)/(a_n)`,  `omega = (a_n)/v`.

    В  малой окрестности точки старта `v = v_0`, нормальное ускорение `a_n` есть проекция ускорения свободного падения `vec g` на нормаль к траектории (рис. 3)

    `a_n = g * cos alpha`.

    Из приведённых соотношений находим радиус кривизны траектории в малой окрестности точки старта

    `R = (v_0^2)/(g cos alpha) = (20^2)/(10 * 0,5) = 80  sf"м"`,

    и угловую скорость, с которой в этой окрестности вращается вектор скорости,

    `omega = (g cos alpha)/(v_0)`.

    Тогда время поворота вектора скорости на угол `varphi = pi/(180) ~~ 0,017` рад будет равно 

    `tau = varphi/omega = (varphi * v_0)/(g * cos alpha) = (0,017 * 20)/(10 * 0,5) ~~ 0,07  sf"с"`.





  • §1. Введение

    Настоящее задание посвящено основным законам механики - законам Ньютона и их следствиям: законам изменения и сохранения импульса и энергии материальной точки и систем материальных точек. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая  причина связана с тем, что в течение учебного года учащиеся 11 класса примут участие в олимпиадах разных уровней, а по завершении учебного года будут сдавать ЕГЭ. К контрольным мероприятиям следует готовиться. Задание адресовано тем, кто хочет восстановить и углубить свои знания по механике в рамках курса физики средней школы. Поэтому наряду с простыми задачами рассмотрены и достаточно сложные, техника решения которых порой недостаточно подробно обсуждается в школьном курсе физики.

    Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.

    Механика - наука, изучающая движение тел и способы описания движения и взаимодействия тел.  Для описания механического движения следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.

    В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.

    Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.

    Для математически точного описания движения используются модели физических тел. Материальная точка - модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве определяется положением изображающей её геометрической точки. Единственная механическая (негеометрическая) характеристика материальной точки - её масса.

  • §5. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами, энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы не известны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопи­ческих тел почти всегда бывают в той или иной степени неупругими - уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не ме­нее, в физике понятие об упругих столкновениях играет важную роль - с такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Переходя к характерным примерам, отметим, что исследование столкновений традиционно проводится как в лабораторной системе отсчёта (ЛСО), т. е. в инерциальной системе отсчёта, связанной с лабораторией, где проводится опыт, так и в системе центра масс, с которой Вы познакомитесь в следующих Заданиях. Напомним также, что центральным ударом шаров (шайб), называют удар, при котором скорости шаров (шайб) направлены вдоль прямой, проходящей через их центры.

    Неупругие столкновения

    Пример 9

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса

    `mv = (m + M) u`.

    По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим

    `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

     `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)`  `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 10

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар того же радиуса массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса

    `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем 

    `mv = mv_(1x) + Mv_2`,

    здесь учтено, что направление скорости налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`,  решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,

    `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 11

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности. Скорости `vecv_1` и `vecv_2` шайб непосредственно перед соударением известны и показаны на рис. 11. Найдите скорости `vecv_(1)^'` и `vecv_(2)^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 11).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется:                               

    `vecp_1 + vecp_2 = vecp_(1)^' + vecp_(2)^'`,               

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_(1)^'= m_1 vecv_(1)^'`, `vecp_(2)^' = m_2 vecv_(2)^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения:

     `v_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид:

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`:

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_(1)^'` и `vecv_(2)^'` образуют с положительным направлением оси `Ox`,

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц). Приведём пример.

    Пример 12

    Гладкая круглая шайба массой `m_1` движется со скоростью `vec v` вдоль хорды, расстояние до которой от центра гладкого тонкого однородного обруча  равно `R//2` (рис. 12). Обруч массой `m_2` и радиусом `R` лежит на гладком горизонтальном столе. Через какое время `tau` после первого удара шайба окажется  на  минимальном  расстоянии   от   центра   движущегося обруча? Каково это расстояние? Удар считайте абсолютно упругим.

    Решение

    Воспользуемся результатами, полученными в предыдущем примере. В ЛСО, ось `Ox` которой направлена по линии центров шайбы и обруча в момент соударения, проекции скоростей шайбы и центра обруча на ось `Ox`  после соударения равны соответственно

    `v_(1x)^' = ((m_1 - m_2)v_(1x) + 2m_2 v_(2x))/(m_1 + m_2) = ((m_1 - m_2)v_(1x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1)v_(2x))/(m_1 + m_2) = (2m_1 v_(1x))/(m_1 + m_2)`,

    здесь `v_(1x) = vcos  pi/6` - проекция скорости шайбы на ось `Ox` до соударе­ния, `v_(2x) = 0` - обруч до соударения покоился.

    Из этих соотношений следует, что в системе отсчёта, связанной с обручем, проекция скорости шайбы на линию центров после соударения

    `v_(1xsf"отн") = v_(1x)^' - v_(2x)^' =- v_(1x) =- vcos  pi/6`

    просто изменила знак, а перпендикулярная линии центров составляющая, как было  показано, в рассматриваемом соударении  не изменяется. Следовательно, в системе, связанной с обручем, шайба отразится по закону «угол падения равен углу отражения», и минимальное расстояние от шайбы до центра обруча снова будет равно `R//2`. Искомое время

    `tau = (R cos^(2)   pi/6)/|v_(1xsf"отн")| = cos  pi/6 R/v = sqrt3/2 R/v`.

  • §3. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

    Рассмотрим систему материальных точек массами `m_1`, `m_2 ...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2 ...`. Импульсом `vecP_sf"с"` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих систему: `vecP_sf"с" = vec p_1 + vec p_2 + ...`.

    Найдём скорость `(Delta vec P_sf"с")/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vec F_1` внешние по отношению к системе тела и внутренняя сила `vec f_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vec F_2`  и внутренняя сила `vec f_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

    `(Delta vec P_("с"))/(Delta t) = (Delta vec p_1)/(Delta t) + (Delta vec p_2)/(Delta t) = (vec F_1 + vec f_(12)) + (vec F_2 + vec f_(21))`.

    По третьему закону Ньютона `vec f_(12) + vec f_(21) = vec (0)`,  и мы приходим к теореме об  изменении импульса системы материальных точек:

    `(Delta vec P_("с"))/(Delta t) = vec F_1 + vec F_2`,

    т. е. скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

    Из приведённого доказательства следует, что третий закон Нью­тона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких  других внешних сил.

    В этом - его более глубокое физическое содержание.

    Пример 5

    Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 6), с которыми клин  действует на опору.


    Решение

    По третьему закону Ньютона искомые силы связаны с силой трения `vec(R_1) = - vecF_("тр")`  и силой нормальной реакции `vec R_2 = - vecN_("г")`, действующими на клин со стороны опоры (рис. 7).

    Силы `vec F_("тр")` и `vecN_("г")`, наряду с силами тяжести, являются внешними по отношению  к системе «клин + брусок» и определяют скорость  изменения импульса этой системы.      

              

    Импульс `vecP_("с")`  системы  направлен  по  скорости  бруска и  по величине  равен произведению массы бруска на его скорость `vecP_("с") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 8):

    `(Delta vec p)/(Delta t) = m vec g + vec N + vecf_("тр")`.

    Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N` получаем:

       `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg (sin alpha - mu cos alpha)`.   

    По теореме об изменении импульса системы «клин + брусок»

    `(Delta vec(P_sf"с"))/(Delta t) = M vec g + m vec g + vec N_("г") + vecF_("тр")`.

    Переходя в последнем равенстве к проекциям   на  горизонтальное  и  вертикальное направления (рис. 7), с учётом  

    Pc,x~=pxcosαP_{\mathrm c,\widetilde x}=p_x\cos\alpha

    получаем  

    Pc,y~=-pxsinαP_{\mathrm c,\widetilde y}=-p_x\sin\alpha

    Pc,x~t=px cosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{\mathrm c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\;\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

    Pc,y~t=-px sinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\;\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

    Отсюда находим искомые силы

    `R_1 = F_sf"тр" = mg (sin alpha - mu cos alpha) cos alpha`,

    `R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha)sin alpha`.

    К этим же результатам можно прийти, анализируя движение на «традиционном языке» сил и ускорений с использованием формулы (2).


  • §4. Сохранение импульса системы материальных точек

    Из  теоремы об изменении  импульса  системы  материальных  точек

    `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i`

    следует сохранение импульса или его проекций в следующих случаях:

    если `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

    если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(sf"c",x) = bbb"const"`;

    наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

    `Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

    следует, что приращение `Delta vecP_("c")` импульса системы мало, т. е. на рассматриваемом интер­вале времени сохраняется импульс системы

    `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

    Пример 6

    Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетающее из пушки ядро очень быстро садится барон Мюнхгаузен, масса которого `5 m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

    Решение

    Вы, конечно, догадались, что эта задача иллюстрирует последний   из перечисленных  случаев  сохранения   импульса   системы. В процессе «посадки» барона на ядро на систему «ядро + барон» дейст­вуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что им­пульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `mvecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

    `m vecv_0 = 6m vecv_1`,

    так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря барону предстоит пройти пешком!

    Пример 7

    На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится соломинка?

    Решение

    Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

    `Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

    здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

    `M vecv_1 + m vecv_2 = vec 0`.

    Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей 

    `vecv_2 = vecv_1 + vec u`,

    здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим

    `v_(2,x) = v_(1,x) + u_(x^')`.

    С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x^')) = 0`, т. е. в любой момент времени  `v_(1,x) =- m/(M + m) u_(x^')`.  Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x^' = u_(x^') Delta t` - жука относительно соломинки, связаны соотношением

    `Delta x_1 =- m/(M + m) Delta x^'`.

    Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи: 

    `S = m/(m + M) L`.

    Пример 8

    Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 9). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                            

    Решение

    Рассмотрим систему тел «клин + грузы» (рис. 10). На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил (рис. 10): тяжести и нормальной реакции горизонтальной опоры

    `Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

    Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

    `(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`;

    здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

    `(2m + 3m) v_(x,"к") + m(v_(x,"к") + u_(x^')) = 0`.

    Отсюда находим связь проекций скорости

    `v_(x,"к") = - m/(6m) u_(x^') = - u_(x^')/6`

    и  элементарных перемещений:

    `Delta x_sf"к" =- (Delta x^')/6`,

    где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x^'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи:

    `S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

    Рассмотренные примеры подчёркивают важную роль законов сохранения. Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.

  • §2. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон:

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон: 

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`                                                               (1)

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`                                                                                 (2)

    Если масса тела остаётся неизменной, то `Delta vec p = Delta (m vec v) = m Delta vec v`, и соотношение (1) принимает вид `m Delta vec v = vec F Delta t`. С учётом `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности соотношений (1) и (2) в рассматриваемом случае.

    В настоящем Задании представлены задачи, для решения которых привлекается  второй  закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.

    3-й закон:

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2) эти силы равны по величине,

    3) они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`                                                           (3)

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта;

    составить уравнение (3);

    перейти к проекциям приращения импульса и сил на те или иные направления; 

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 1

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени t1=10 сt_1=10\;\mathrm с горизонтальную силу величиной F=5 HF=5\;\mathrm H. После прекращения действия силы тело движется до остановки t2=40 ct_2=40\;\mathrm c.  Определите величину FтрF_\mathrm{тр} силы трения скольжения, считая её постоянной.

    Решение

    На рис. 1 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона 

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    px=F-Fтрt\triangle p_x=\left(F-F_\mathrm{тр}\right)\triangle t

    и в процессе торможения `(F = 0)`

    px=-Fтрt\triangle p_x=-F_\mathrm{тр}\triangle t.

    Просуммируем все приращения импульса тела от старта до остановки:

    `sum Delta p_x = sum_(0 <= t <= t_1) (F - F_sf"тр") Delta t + sum_(t_1 <= t <= t_1 + t_2) (-F_sf"тр" ) Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    px конечн-px начальн=F-Fтрt1+-Fтрt2p_{x\;\mathrm{конечн}}-p_{x\;\mathrm{начальн}}=\left(F-F_\mathrm{тр}\right)t_1+\left(-F_\mathrm{тр}\right)t_2.

    С учётом равенств px конеч=0p_{x\;\mathrm{конеч}}=0px начальн=0p_{x\;\mathrm{начальн}}=0 и независимости сил от времени приходим к ответу на вопрос задачи:

    Fтр=t1t1+t2F=1010+40·5=1 HF_\mathrm{тр}=\dfrac{t_1}{t_1+t_2}F=\dfrac{10}{10+40}\cdot5=1\;\mathrm H.

    Далее рассмотрим пример, в котором одна из сил зависит от времени. 

    Пример 2

    На какое максимальное расстояние `L_max` улетит мяч, если в процессе удара футболист действует на мяч постоянной по направлению силой, величина которой изменяется по закону, представленному на  рис. 2.  Длительность  удара τ=8·10-3 c\tau=8\cdot10^{-3}\;\mathrm c,  максимальная  сила Fmax=3,5·103 HF_\max=3,5\cdot10^3\;\mathrm H, масса мяча m=0,5 кгm=0,5\;\mathrm{кг}. Здесь и далее ускорение свободного падения g=10 м/с2g=10\;\mathrm м/\mathrm с^2.   Сопротивление воздуха не учитывайте.  

                        

    Решение

    В процессе удара на мяч действуют две силы: mg=0,5·10=5 Hmg=0,5\cdot10=5\;\mathrm H - тяжести и сила `vec F`, с которой футболист действует на  мяч,                    

              FFmax=3,5·103 HF\leq F_\max=3,5\cdot10^3\;\mathrm H.

    Так как `mg < < F_max`, силой тяжести пренебрежём. Из кинематики известно, что максимальная дальность полёта наблюдается при старте под углом `alpha = pi/4`. Процесс удара показан на рис. 3.   

    По второму закону  Ньютона  приращение  импульса равно импульсу силы `Delta vec p = vec F * Delta t`. Переходя к проекциям приращения импульса и силы на ось `Ox`, получаем 

       `Delta p_x = F Delta t`.

    Просуммируем элементарные приращения импульса мяча за время удара

    `sum Delta p_x = mv - 0 = sum_(0 <= t <= tau) F Delta t`. 

    Импульс  силы  `sum_(0 <= t <= tau) F(t) Delta t` за  время  удара численно равен площади под графиком зависимости этой силы от времени (каждое слагаемое `F(t) Delta t` в импульсе силы можно интерпретировать как площадь элементарного прямоугольника со сторонами `F(t)` и `Delta t` на графике зависимости `F(t)`). Тогда импульс силы `F` за время удара равен 

    `sum_(0 <= t <= tau) F Delta t = (F_max tau)/2`

    и в рассматриваемом случае не зависит от того, в какой именно момент времени сила достигает максимального значения (площадь треугольника равна  половине произведения основания на высоту!). Далее  находим импульс мяча в момент  окончания действия силы

    `mv = 1/2 F_max * tau`.

    Отсюда находим начальную скорость полёта мяча

    `v = (F_max * tau)/(2m) = (3,5 * 10^3 * 8 * 10^-3)/(2 * 0,5) = 28 sf"м/с"`

    и  максимальную дальность (старт под углом `alpha = pi/4`) полёта

    `L_max = (v^2)/g = (28^2)/(10) ~~ 78 sf"м"`.

    В рассматриваемом модельном примере получен несколько завышенный по сравнению с наблюдениями результат.

    На вступительных испытаниях и олимпиадах в вузах России регу­лярно предлагаются задачи динамики, в которых наряду с «традицион­ными» силами: силой тяжести, силой Архимеда и т. д., на тело дейст­вует сила лобового сопротивления. Такая сила  возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 3

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v = 10 sf"м/с"`, упал на землю, имея вертикальную составляющую скорости по абсолютной величине на `delta = 30 %` меньшую, чем при бросании. Найдите время  по­лёта мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы:

    `m * Delta vec v = (m vec g - k vec v) * Delta t`.

    Переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем   

    `m * Delta v_y = - mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде:

    `m * Delta v_y = - mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`:

    `m * (sum Delta v_y) = - mg * (sum Delta t) - k* (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) = - mg (T - 0) - k (y (T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое

    `y (T) - y (0) = 0`.

    Тогда  `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha = - mgT`.  Отсюда находим продолжительность полёта мяча:

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях.

    Пример 4

    Кубик, движущийся поступа­тельно со скоростью `v` (рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой.

    Коэффициент трения `mu` скольжения кубика по стенке и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.         

                               

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 5.

    По второму закону Ньютона

    `Delta vec p = (m vec g + vecN_("г") + vecF_("тр") + vecN_("в") ) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x = - F_sf"тр" Delta t`,  `Delta p_y = N_sf"в" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"в" Delta t` по всему времени `tau` соуда­рения, получим:          

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"в" Delta t`.          

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"в"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"в" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения 

    `Delta p_x = - F_sf"тр" Delta t = - mu N_sf"в" Delta t`

    по всему времени `tau` соударения, получим:

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha = - sum _(0 <= t<= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.                               

    Отсюда  `v_x (tau) = v (cos alpha - 2 mu sin alpha)`. Далее, считая `v_x (tau) > 0`, получаем

    `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.

  • §1. Введение

    Настоящее задание посвящено законам изменения и сохранения им-пульса и энергии для материальной точки и систем материальных точек в механике. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая  причина связана с тем, что часть учащихся в 10-ом классе начинает обучаться в ЗФТШ впервые.

    Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.

    Механика – наука, изучающая движение тел и способы описания движения и взаимодействия тел.  Для описания механического движе­ния следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.

    В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.

    Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.

    Для математически точного описания движения используются модели физических тел. Материальная точка модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве опреде­ляется положением изображающей её геометрической точки. Единст­венная механическая (негеометрическая) характеристика материальной точки – её масса.

  • §3. Скалярное произведение векторов

    1. 

    Определение

    Скалярным произведением  двух векторов `vec a` и `vec b` называется число, равное произведению модулей этих векторов на косинус угла между ними, и обозначается `vec a * vec b`.

    Таким образом,

    `vec a * vec b = a * b * cos alpha`                                                              (6)

    Иногда используют более сложные обозначения для скалярного произведения векторов: `(vec a vec b)` или даже `(vec a, vec b)`.

    Если векторы `vec a` и `vec b` ортогональны `(vec a _|_ vec b)`, то `cos alpha = 0` и поэтому `vec a * vec b = 0`. Скалярное произведение двух векторов также равно нулю, если  хотя бы один из векторов является нулевым.

    Если векторы коллинеарны и одинаково направлены, то `cos alpha = 1`, поэтому скалярное произведение векторов `vec a` и `vec b` равно произведению модулей векторов `vec a` и `vec b`. В частности, скалярное произведение вектора на самого себя равно квадрату его модуля: `vec a * vec a = a^2`.

    2. Имеется ещё одна важная  форма записи скалярного произведения: через проекции векторов в прямоугольной системе координат `xOy`. Пусть в некоторой системе координат векторы `vec a` и `vec b` имеют координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Тогда для скалярного произведения векторов справедлива формула

    `vec a * vec b = a_x b_x + a_y b_y`                                                                     (7)

    Действительно, имеем `vec a * vec b = (a_x vec i + a_y vec j) * (b_x vec i + b_y vec j)`, или после перемножения скобок

    `vec a * vec b = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j`.

    Учитывая, что векторы `vec i` и `vec j` единичные и взаимно перпендикулярные,

    (`vec i * vec i = vec j * vec j = 1` и `vec i * vec j = vec j * vec i = 0`),  получим (7).

    Уточнение

    (написано по просьбе Володковича Н.А., преподавателя школы Смоленской обл.). Кажущееся привычным перемножение скобок

    `vec a * vec b = (a_x vec i + a_y vec j) * ( b_x vec i + b_y vec j) = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j` 

    не так очевидно для векторов. Во всяком случае, нужно ещё доказать, что оно согласуется с определением (6) скалярного произведения. Докажем, что

    `(vec a + vec b)(vec c + vec d) = vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d`.              (*)

    Для этого заметим, что скалярное произведение (6) можно переписать в виде

    `vec a * vec b = a * b_a`                                                                    (6'),

    где `b_a` – проекция вектора `vec b` на направление вектора `vec a`.

    (Можно было записать и иначе:

    `vec a * vec b = a_b * b`                                                                    (6"),

    где `a_b` – проекция вектора `vec a` на направление вектора `vec b`.)

    Далее – цепочка простых выкладок:

    `vec a * (vec c + vec d) = (vec c + vec d) * vec a = a (c_a + d_a) = a * c_a + a * d_a = vec a * vec c + vec a * vec d`,

    `(vec a + vec b)(vec c + vec d) -= (vec a + vec b) * vec e = vec a * vec e + vec b * vec e = vec a * (vec c + vec d) + vec b * (vec c + vec d)`,

    откуда следует равенство (*) (было введено обозначение `vec c + vec d -= vec e`).

    При другом выборе системы координат векторы `vec a` и `vec b` имели бы другие  координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Поэтому могло бы показаться, что в новой системе координат скалярное произведение векторов (7) будет иметь другое значение. На самом деле, согласно (6) величина скалярного произведения останется такой же: модули векторов и угол между ними не зависят от поворотов и сдвигов системы координат.

    Пример 3

    `vec a = (3; lambda)`, `a = 5`. Определите `lambda`.

    Решение

    Согласно формуле (4) имеем `3^2 + lambda ^2 = 5^2`, откуда `lambda = 16`  и  `lamda =+- 4`. Заметим, что условию задачи удовлетворяют два разных вектора (см. рис. 16).

    Пример 4

    Векторы `vec a = (0; 3)` и `vec b = (lambda ; 5)` коллинеарны друг другу. Определите `lambda`.

    Решение

    Вектор `vec a` параллелен оси `Oy` (перпендикулярен оси `Ox`: `a_x = 0`). Поэтому коллинеарный ему вектор `vec b` также должен быть перпендикулярен оси `Ox`, т. е. должно выполняться равенство `b_x = 0`,  или `lambda = 0`.

    Пример 5

    Векторы `vec a = (- 1; 3)` и `vec b = (lambda; 5)` перпендикулярны друг другу. Определите `lambda`.

    Решение

    Векторы `vec a` и `vec b` перпендикулярны друг другу, поэтому равно нулю скалярное произведение этих векторов (см. формулу (6) и вывод после неё). Тогда по формуле (7) для скалярного произведения векторов имеем: `(- 1) * lambda + 3 * 5 = 0`, откуда `lambda = 15`.

    Пример 6

    `vec p = vec b (vec a vec c) - vec c (vec a vec b)`. Докажите, что `vec p _|_ vec a`.

    Решение

    Надо доказать, что скалярное произведение векторов `vec a` и `vec p` равно нулю. В самом деле, `vec a * vec p = (vec a vec b)(vec a vec c) - (vec a vec c)(vec a vec b) -= 0`.

    Пример 7

    Векторы `vec a`, `vec b`, `vec c` составляют треугольник (см. рис. 17).

    Воспользовавшись  свойствами скалярного произведения векторов, докажите теорему косинусов

    `c^2 = a^2 + b^2 - 2 ab cos varphi`                                                           (8)

                             

    Решение

    По условию задачи имеем `vec c = - (vec a + vec b)`. Квадрат модуля  вектора `vec c` можно представить как скалярное произведение его на самого себя: `c^2 = vec c * vec c`. Вычислим это скалярное произведение:

    `vec c * vec c = + (vec a + vec b) * (vec a + vec b) = vec a * vec a + vec a * vec b + vec b * vec a + vec b * vec b = a^2 + b^2 + 2ab cos alpha`.

    Угол `alpha` между векторами `vec a`  и `vec b` и угол `varphi` (см. рис.17) - два смежных угла,   т. е. `alpha = 180^@ - varphi` .  Поэтому  имеем `c^2 = a^2 + b^2 + 2 ab cos (180^2 - varphi)`.

     Пользуясь известной из тригонометрии формулой приведения `cos (180^@ - varphi) =- cos varphi`, получаем формулу (8)

    Пример 8

    Найдите угол `alpha` между векторами `vec a = 3 vec i + 2 vec j` и `vec b = - 2 vec i - vec j`.

    Решение

    По определению скалярного произведения `vec a * vec b = a * b * cos alpha`,  где `alpha` - искомый угол, `a` и `b` - модули векторов `vec a` и `vec b` соответственно. Отсюда `cos alpha = (vec a * vec b)/(a * b)`.  В свою очередь,

     `vec a * vec b = a_x b_x + a_y b_y = 3 * (- 2) + 2 * (- 1) = - 8`,

    `a = sqrt(a_x^2 + a_y^2) = sqrt(3^2 + 2^2) = sqrt13`,

    `b = sqrt(b_x^2 + b_y^2) = sqrt((- 2)^2 + (- 1)^2) = sqrt5`. 

     Тогда  `cos alpha = (- 8)/(sqrt13 * sqrt5) = (- 8)/sqrt(65) ~~ - 0,992`. Отсюда `alpha ~~ 173^@`.



  • §4. Примеры из физики

    Простейшие примеры векторов в физике - скорость и сила.

    1. Всякое движение можно представить как результат сложения нескольких движений, его составляющих. Скорость результирующего движения изображается по величине и направлению диагональю параллелограмма, построенного на отрезках, изображающих составляющие скорости, как на сторонах. Рассмотрим конкретный пример.

    Пример 9

    Рыбак переправляется на лодке `A` через реку, которая течёт в сторону, указанную стрелкой (рис. 18). Пусть скорость течения воды `vec(v_1)` изображается по величине и направлению отрезком `AB`, а скорость `vec(v_2)` движения лодки относительно воды под влиянием усилий гребца изображается отрезком `AC` (в стоячей воде лодка двигалась бы по направлению `AC` со  скоростью `vec(v_2)`). Лодка будет двигаться относительно берега по направлению `AM` со скоростью `vec v`, изображаемой диагональю `AD` параллелограмма, постро­енного на векторах `vec(v_1)` и `vec(v_2)` (в данном случае параллелограмм `ABCD` является прямоугольником).

    2. Сила - как векторная величина - всегда имеет определённое направление, модуль, а также точку приложения.

    Часто встречаются случаи, когда на тело действуют несколько сил. Тогда бывает удобно заменить их одной силой, которая производит на тело такое же действие, как и несколько одновременно действующих сил. Такую силу (если она существует) называют равнодействующей. Нахождение равнодействующей нескольких сил осуществляется с по­мощью правил векторного сложения, при этом слагаемые силы назы­вают составляющими.

    Так, несколько сил, действующих на одну и ту же точку тела, всегда можно заменить одной равнодействующей, как бы ни были направлены силы  и каковы бы ни были их величины. Пусть, например, на тело действуют  четыре  силы `vec(F_1)`, `vec(F_2)`,  `vec(F_3)` и `vec(F_4)`, приложенные  к  одной  точке `O` и лежащие в одной плоскости (рис. 19). Тогда их равнодействующая `vec F` будет равна векторной  сумме  этих  сил,  найденной   по  правилу   многоугольника (рис. 20).

                       

    Пример 10

    Найти равнодействующую `vec R` трёх равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми силами равны между собой.

    `F_1 = F_2 = F_3 = F`.

    Решение

    См. рис. 21. Углы между парами векторов  `vec(F_1)` и `vec(F_2)`, `vec(F_2)` и `vec(F_3)`, а также между векторами `vec(F_1)` и `vec(F_3)`, равны друг другу и равны `120^@`. Сложим силы `vec(F_2)` и `vec(F_3)` по правилу параллелограмма. Вследствие равенства модулей сил `vec(F_2)` и `vec(F_3)` этот параллелограмм есть ромб. Сумма сил `vec(F_2) + vec(F_3)` есть диагональ ромба, поэтому углы между парами векторов `vec(F_2)` и `vec(F_2) + vec(F_3)`, а также `vec(F_3)` и `vec(F_2) + vec(F_3)` равны по `60^@`, т. е. векторы `vec(F_1)` и `vec(F_2) + vec(F_3)` направлены вдоль одной прямой, но в противоположные стороны. Силовой параллелограмм, построенный на векторах `vec(F_2)` и `vec(F_3)`, состоит из двух равносторонних треугольников, поэтому модуль силы

    `|vec(F_2) + vec(F_3)| = F_2 = F_3 = F = F_1`,  т. е  `vec F_1 = - (vec(F_2) + vec(F_3))`, 

    откуда следует  `vec(F_1) + vec(F_2) + vec(F_3) = 0`.

    Пример 11*

    К телу приложено `6` сил, лежащих в одной плоскости и составляющих друг с другом углы в `60^@`. Силы последовательно равны `1`, `2`, `3`, `4`, `5` и `6 Н`. Найти равнодействующую `vec R`  этих шести сил.

    Решение

    Сложение сил по правилу многоугольника здесь нецелесообразно. Поступим иначе.  Сложим сначала попарно силы, направленные вдоль одной прямой (см. рис. 22 а, б, в). 

    Получим

     `|vec(F_2) + vec(F_4)| = 4 - 1 = 3`,

    аналогично  `|vec(F_2) + vec(F_5)| = 5 - 2 = 3`  и `|vec(F_3) + vec(F_6)| = 6 - 3 = 3`.

    Сумма сил `vec(F_2) + vec(F_5)` направлена вдоль вектора `vec(F_5)`. Туда же направлена и сумма сил `vec(F_1) + vec(F_4) + vec(F_3) + vec(F_6)`, причём модуль этой силы равен `3`. В итоге получаем, что сумма всех шести сил `vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)` направлена вдоль направления силы `vec(F_5)`, а модуль этой силы `|vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)| = 3 + 3 = 6 Н`.

    Пример 12*

    Найти равнодействующую `vec R` пяти равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми соседними силами равны между собой (см. рис. 23). (Эти углы, разумеется, равны `360^@ //5 = 72^@`.) 

                        

    Решение

    В отличие от предыдущего примера здесь мы имеем нечётное число сил, поэтому невозможно образовать из них целое число пар. Поступим иначе. Возьмём какую-нибудь силу, например, `vec(F_1)`, а остальные сгруппируем в пары и попарно сложим их (см. рис. 24):

     `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`.

    Почему удобна именно такая группировка сил в пары? Дело в том, что обе суммы сил (и `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`)  направлены вдоль линии действия силы `vec(F_1)`. Ясно, что равнодействующая всех сил будет направлена вдоль линии действия силы `vec(F_1)`. Модули сумм сил легко найти из геометрии. Например, в силовом параллелограмме, построенном на векторах `vec(F_2)` и `vec(F_5)`, который является ромбом, длина диагонали ромба (модуль силы `vec(F_2) + vec(F_5)`) равна удвоенной половинке диагонали, а та легко ищется из любого из четырёх прямоугольных треугольников, на которые ромб разбивается диагоналями. В результате

    `|vec(F_2) + vec(F_5) | = 2F cos 72^@`,

    где `F` - модуль любой из пяти исходных сил. Аналогично

    `|vec(F_3) + vec(F_4)| = 2F cos 36^@`.

    В итоге для модуля искомой силы получаем формулу

    `R = F(1 + 2 cos 72^@ - 2 cos 36^@)`      (*).

    Для углов `72^@` и `36^@` нет таких простых формул, как для углов `30^@`, `45^@` или `60^@`. Пользуясь калькулятором, можно, однако, показать, что согласно формуле (*) `R = 0`.

    Имеется и более красивое доказательство того, что результирующий вектор есть нулевой вектор. В самом деле, мы довольно произвольно взяли в качестве силы, которой не хватило пары, силу `vec(F_1)`. Если бы в качестве такой взять силу `vec(F_2)`, а в пары объединить `vec(F_1)` и `vec(F_3)` (одна пара) и `vec(F_4)` и `vec(F_5)`, то, повторив рассуждения, получим, что равнодействующая всех пяти сил `vec R` должна быть направлена вдоль линии действия силы `vec(F_2)`. Возможно ли, чтобы вектор был одновременно направлен вдоль двух несовпадающих друг с другом направлений (и `vec(F_1)`, и `vec(F_2)`; а на самом деле, как догадался читатель, ещё и вдоль направления действия сил `vec(F_3)`, `vec(F_4)` и `vec(F_5)`!)? Ненулевым вектор не может быть! Остаётся одна возможность: суммарный вектор – нулевой!


    В примерах 10 и 11 мы искали по правилу параллелограмма суммы сил.

    В примере 12 нас  интересовала лишь проекция равнодействующей силы на направление (например, силы `vec(F_1)`).

    В следующих примерах наш интерес будет также скорее не к равнодействующей силе, а только к каким-то её проекциям.

    Пример 13

    Электрический фонарь весом `Q = 16 Н` укреплён, как показано на рис. 25. 

    Определите отношение натяжений `T_1` и `T_2` в проволоках `BA` и `BC`, углы наклона которых даны на рисунке.

                          

    Решение

    В условиях равновесия сумма всех сил, приложенных к точке `B`, равна нулю. Поэтому проекция равнодействующей всех сил на горизонтальное направление тоже равна нулю. Проекция силы со стороны проволоки, идущей к фонарю, на это направление равна нулю (эта сила вертикальна). Остаются вклады от двух натяжений со стороны проволок `BA` и `BC`. Горизонтальную ось направим слева направо. Тогда имеем:  T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0 (см. рис. 26), т. е.

    `T_1 * cos 60^@ - T_2 cos 45^@ = 0`

    (или `T_1 * sin 30^@ - T_2 sin 45^@ = 0`), откуда получаем `T_1//T_2 = sqrt2`.

    Пример 14*

    Однородная массивная верёвка подвешена за два конца на разных высотах (см. рис. 27). Масса верёвки `m`.  Углы, которые составляет верёвка с вертикалью в точках закрепления, равны `30^@` и `60^@`.

    Определите силы натяжения верёвки вблизи её точек крепления.

                                  

    Решение

    Задача кажется очень трудной, т. к. не ясно, какую роль играет неизвестная нам форма верёвки, которую она примет под действием сил тяжести всех частей верёвки. (В предыдущем примере мы не интересовались провисанием проволок под действием силы тяжести, молчаливо считая провисание малым.) И всё же задача в той постановке, в какой дана,  имеет простое решение. Мысленно проведём горизонтальную ось слева направо. Поскольку верёвка находится в равновесии, то сумма проекций всех сил на горизонтальное направление равна нулю. Сила тяжести верёвки имеет нулевую проекцию на это направление (эта сила направлена вертикально). Снова остаются вклады от двух натяжений (см. рис. 28):

    T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0, или `- T_1 * sin 30^@ + T_2 sin 60^@ = 0`.

    Полагая `sin 30^@ = 1//2` и `sin 60^@ = sqrt3 //2`, находим `T_1 // T_2 = sqrt3`. Мысленно проведём ещё и вертикальную ось, направив её вниз. Сумма проекций всех сил на эту ось также равна нулю:

    `mg - T_1 cos 30^@ - T_2 cos 60^@ = 0`.

    Учитывая найденное ранее соотношение между `T_1` и `T_2` и значения `cos 60^@ = 1//2` и `cos 30^@ = sqrt3 //2`, получаем:

    `mg - sqrt3 * T_2 * sqrt3 //2 - T_2 //2 = 0`,  

    откуда

    `T_2 = mg//2` и `T_1 = sqrt3 mg//2`.

    Пример 15

    На гладкой наклонной плоскости с углом наклона `alpha` лежит брусок массой `m`. Какую горизонтальную силу нужно приложить к бруску, чтобы он находился в покое (рис. 29)? 

    Определите также модуль нормальной силы реакции на брусок со стороны наклонной плоскости.

                                     


    Решение

    Брусок по условию задачи  покоится. Значит, сумма всех сил, приложенных к бруску, равна нулю. Равны нулю и суммы проекций сил на любые направления,  в частности, на направление вдоль наклонной плоскости и перпендикулярное ему. Нормальная сила реакции `vec N` со стороны наклонной плоскости имеет равную нулю составляющую вдоль наклонной плоскости.

    Проекция сила тяжести `m vec g` на ось `Ox` вдоль наклонной плоскости (рис. 30) равна `- mg sin alpha`, а проекция горизонтальной силы `F` на эту ось равна `F cos alpha`. Других сил вдоль наклонной плоскости не действует (плоскость, по условию задачи, гладкая, т. е. сила трения пренебрежимо мала). Приравнивая нулю сумму проекций на ось `Ox` всех сил, действующих на тело, получаем: `- mg sin alpha + F cos alpha = 0`, откуда находим

      `F = mg  (sin alpha)/(cos alpha) = mg * bbb"tg"  alpha`.     

    Для отыскания `N` обратимся к проекциям сил на направление `Oy`. Приравняем нулю и сумму проекций на ось `Oy`:

     `N - mg cos alpha - F sin alpha = 0`,        

    откуда `N = mg cos alpha + F sin alpha`, или с учётом найденного значения `F`:

    `N = mg cos alpha + mg  (sin^2 alpha)/(cos alpha) = mg  (cos^2 alpha + sin^2 alpha)/(cos alpha)`,

    тогда с учётом основного тригонометрического тождества, `sin^2 alpha + cos^2 alpha = 1`, получаем окончательно

    `N = (mg)/(cos alpha)`.

    Пример 16

    На шероховатой поверхности доски лежит брусок массой `m`. К нему приложена сила, направленная под углом `alpha` к горизонту (см. рис. 31). 

    Определите модуль нормальной силы реакции со стороны поверхности.

                     

    Решение

    Поскольку брусок не проваливается и не подскакивает вверх, то сумма проекций сил на вертикальную ось равна нулю:

    `N + F * sin alpha - mg = 0`,

    (см. рис. 32), откуда находим

                     `N = mg - F * sin alpha`.

    Замечание

    Часто совершенно безосновательно приравнивают силу реакции `N` силе тяжести `mg`. Мы видим, что даже в случае горизонтальной поверхности это в общем случае не так. Для наклонной плоскости это тоже не так. В предыдущем примере нормальная сила реакции равнялась `mg//cos alpha`. Кстати, если бы удерживающая сила `F` действовала там не вдоль горизонтали, а вдоль наклонной плоскости, то для удержания бруска на наклонной плоскости потребовалась бы сила величиной `F = mg sin alpha`, а нормальная сила реакции была бы равна `N = mg cos alpha` (и снова не равнялась бы `mg`!)  

    Докажите это самостоятельно.

    Пример 17

    Самолёт взлетает с аэродрома со скоростью v=220 км/чv=220\;\mathrm{км}/\mathrm ч под углом `alpha = 20^@` к горизонту. Найдите модули горизонтальной и вертикальной составляющих скорости самолёта.

    Решение

    (См. рис. 33). В данном примере мы имеем дело с весьма простым случаем разложения скорости на два взаимно перпендикулярных направления:  

    `vec v = vec(v _sf"гор") + vec(v_sf"верт")`,

    vгор=v cos α207 км/чv_\mathrm{гор}=v\;\cos\;\alpha\approx207\;\mathrm{км}/\mathrm ч,  vверт=v sin α75 км/чv_\mathrm{верт}=v\;\sin\;\alpha\approx75\;\mathrm{км}/\mathrm ч.

    Пример 18

    В  безветренную  погоду  самолёт  летит  со   скоростью 180 км/ч180\;\mathrm{км}/\mathrm ч (50 м/с50\;\mathrm м/\mathrm с) относительно земли. С какой скоростью относительно земли будет лететь самолёт, если дует западный ветер со скоростью   10 м/с10\;\mathrm м/\mathrm с?

    Решение

    (См. рис. 34). В данном случае мы имеем дело со сложением движений: `vec(v_sf"с") = vec(v_sf"св") + vec(v_sf"в")`, где `vec(v_sf"св")` - скорость самолёта относительно воздуха (модуль которой равен скорости самолёта относительно земли в безветренную погоду), а `vec(v_sf"в")` - скорость воздуха. Далее по теореме Пифагора получаем:

    vс=502+102=260051 м/сv_\mathrm с=\sqrt{50^2+10^2}=\sqrt{2600}\approx51\;\mathrm м/\mathrm с.

    Пример 19

    Лодка пытается пересечь реку, текущую со скоростью u=3 км/чu=3\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде v=5 км/чv=5\;\mathrm{км}/\mathrm ч. Под каким углом `alpha` к нормали к берегу надо направить лодку, чтобы она двигалась поперек реки (без сноса)? Какой будет при этом модуль скорости лодки `v` относительно берега?

    Решение

    Как и в примере 9, мы также имеем дело со случаем сложения движений. Но там было проще: не требовалось выбирать никакой стратегии, рыбак лишь наблюдал, как снесёт его лодку течением воды в реке. Если бы вода в реке покоилась, то, направив корпус лодки под углом `alpha` к нормали, мы заставили бы её двигаться в направлении вектора `vec V` (см. рис. 35). В действительности, вода в реке не стоячая, а имеет скорость `vec u` Поэтому сносимая течением лодка будет двигаться в направлении вектора `vec v` таком, что `vec v = vec V + vec u`. Учитывая, что оба треугольника в параллелограмме на рис. 35 прямоугольные (по условию, лодка должна двигаться перпендикулярно берегам), находим

    `sin alpha = u//V = 3//5`, `alpha ~~ 37^@`,

    а по теореме Пифагора v=V2-u2=4 м/сv=\sqrt{V^2-u^2}=4\;\mathrm м/\mathrm с.

    Пример 20*

    Лодка  пытается  пересечь  реку, текущую  со    скоростью u=5 км/чu=5\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде V=3 км/чV=3\;\mathrm{км}/\mathrm ч.   Под каким углом `alpha` к нормали к берегу надо направить корпус лодки, чтобы её снесло как можно меньше? Под каким углом `beta` к нормали к берегу будет при этом плыть лодка?

    Решение

    В данном примере скорость лодки относительно воды меньше, чем скорость воды в реке, `V < u`, поэтому реализовать план из предыдущего примера (рис. 35) невозможно. Наша цель состоит в том, чтобы направить корпус лодки под таким углом `alpha` к нормали к берегу, чтобы сносимая течением лодка двигалась под углом `beta`, по возможности наименьшим (см. рис. 36 ф, б, в).

    В данном примере складывать скорости (лодки относительно воды `vec V` и воды в реке `vec u`) удобно по правилу треугольника, а не параллелограмма: приставим начало вектора `vec V` к концу вектора `vec u`. Выбирая оптимальный план (с наименьшим углом сноса), будем мысленно поворачивать вектор `vec V`. При этом конец вектора будет описывать окружность с центром в конце вектора `vec u`. Из рисунков видно, что минимальному углу сноса лодки `beta` соответствует случай, когда вектор `vec v = vec V + vec u` направлен по касательной к этой окружности. При этом вектор `vec V _|_ vec v` т. е. треугольник скоростей на  рис. 36 в прямоугольный. Отсюда получаем:

    `sin alpha = V//u = 3//5`;  `alpha ~~37^@`; `beta = 90^@ - alpha ~~53^@`.   

    Пример 21*

    Лодку вытягивают из воды, стоя на крутом берегу и выбирая верёвку, которая привязана к носу лодки, со скоростью `v` (см. рис. 37).

    Какой будет скорость лодки `u` в момент, когда верёвка будет составлять угол `alpha` с горизонтом? Верёвка нерастяжима.

    Решение

    Традиционная ошибка решающих эту задачу состоит в том, что пытаются разложить движение лодки на два направления – горизонтальное и вертикальное, делая (неправильное!) построение, как показано на рис. 38а и получая неверный ответ `u = v * cos alpha`. Что здесь неправильно? В отличие от самолёта из примера 17, который двигался под отличным от нуля углом к горизонту (см. рис. 33), здесь лодка движется горизонтально! Сделаем другое разложение скорости лодки `vec u` по двум направлениям – вдоль верёвки (в данный момент времени!) и перпендикулярно ей (см. рис. 38б).

    Проекция вектора `vec u` на направление верёвки будет равна скорости `v`, с которой выбирают верёвку: `v = u cos alpha`, поэтому `u = v/(cos alpha)`.

    Поясним ещё, почему проекция вектора `vec u` на направление верёвки будет равна скорости `v` с которой выбирают верёвку. Если мы имеем абсолютно твердое тело (АТТ), деформациями в котором можно пренебречь, или нерастяжимую нить (но уже максимально натянутую), то как бы ни двигались АТТ или нерастяжимая нить, они будут обладать следующим свойством. Возьмём две произвольные точки `A` и `B` нити или АТТ и мысленно соединим их прямой. Тогда составляющие скоростей выбранных точек вдоль этой прямой в любой момент времени будут равны друг другу: vA=vB\overrightarrow{v_{A\parallel}}=\overrightarrow{v_{B\parallel}} (см. рис. 39). В противном случае изменялось бы расстояние между точками `A` и `B`. Составляющие скорости, перпендикулярные отрезку прямой `AB`, могут быть при этом любыми.

    Пример 22

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов (см. рис. 40). В некоторый момент времени силы натяжения тросов, идущих от лодок 1 и 2, равны друг другу по модулю и равны `F`. Угол между тросами равен `2 alpha`. Какая равнодействующая сила приложена к буксируемой лодке со стороны тянущих её лодок? Чему будет равна эта сила в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

    Решение

    Две силы нужно сложить по правилу параллелограмма, который в данном случае будет ещё и ромбом с перпендикулярными друг другу диагоналями, разбивающими его на четыре равных прямоугольных треугольника. Из геометрии рис. 41 видно, что модуль равнодействующей силы `R` равен удвоенной длине прилежащего катета: `R = 2F cos alpha`. При стремлении угла между направлениями тросов к нулю `R -> 2F`   (`cos alpha -> 1`  при  `alpha -> 0`).

    Хитрее оказывается похожая задача, когда заданы не силы, а скорости.

    Пример 23*

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов (см. рис. 42). В некоторый момент времени модули скоростей лодок 1 и 2 равны друг другу и равны `v_1 = v_2 = v`. Найти модуль и направление скорости буксируемой лодки `u`. Тросы нерастяжимы. Чему будет равна эта скорость в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

                    

    Решение

    Ясно, что «решение» `u = 2v cos alpha` (как в предыдущем примере) не подходит, т. к. при `alpha -> 0` мы получили бы, что `u -> 2v`, чего не может быть. Если, например, две собаки в упряжке бегут с одинаковыми скоростями `v` в одном направлении, то и скорость упряжки будет равна этой же скорости `v` (если, конечно, упряжка не отцепилась или к ней не подключили дополнительно мотор).

    Решение задачи такое же, как в примере 21. В данном примере важнейшими словами являются «Тросы нерастяжимы». Ясно, что правильное построение, учитывающее это условие, должно быть таким, как на рис. 43, откуда немедленно получаем `v = u cos alpha`, поэтому `u = v/(cos alpha)`. Тогда в предельном случае, когда `alpha -> 0`, имеем `u -> v`,  как и должно быть.

    Заметим, что четырёхугольник на рис. 43 весьма мало похож на параллелограмм из предыдущего примера. Еще меньше будет похож на параллелограмм этот четырёхугольник, когда модули скоростей `v_1 != v_2` (см. рис. 44).

    Пример 24*

    Две лодки буксируют третью с помощью двух тросов (рис. 45). В некоторый момент времени скорость 2-ой лодки в 2 раза больше, чем скорость 1-ой, `v_2 = 2v_1 = 2v`, а угол между тросами равен `90^@`. В каком направлении и с какой скоростью движется в этот момент буксируемая лодка? Тросы нерастяжимы.

          

    Решение

    В данном случае четырёхугольник на рис. 44 будет прямоугольником  - см. рис. 46 (т. е. всё же параллелограммом).

    По определению тангенса угла  `"tg"varphi _1 = v_2 //v_1 = 2`, откуда, пользуясь калькулятором, находим `varphi _1 ~~63^@`; `varphi _2 = 90^@ - varphi _1 ~~ 27^@`.                

    Модуль скорости буксируемой лодки найдём по теореме Пифагора (раз уж у нас «случайно» появились прямоугольные треугольники):    

    `u = sqrt(v_1^2 + v_2^2) = sqrt(v^2 + (2v)^2) = sqrt5 * v ~~ 2,2 v`. 



  • §2. Проекция вектора на заданное направление

    1. Проекция вектора на заданное направление. 

    Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O` (рис. 10). Угол, образованный лучами, исходящими из точки `O` и  направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.

    Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vecb`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего  начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vecb`,  будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.

    Угол `alpha` может принимать различные значения, поэтому в зави­симости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`,  то косинус такого угла отрицателен (см. рис. 11).

    Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны (см. рис. 12).

    Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.

    Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.

    2. Разложение вектора.

    До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.

    Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O`  прямые `AO` и `OB` (см. рис. 13).

    Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`.  В результате получится параллелограмм. По построению

    `vec a = vec(a_1) + vec(a_2)`                                                                            (*)

    Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.

    Пример 1

    В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?

    Ответ

    Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.

    Пример 2

    Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `varphi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `varphi = 15^@`.    Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)` (см. рис. 13).

    Решение

    `a_(a1) = a cos varphi_1 ~~ 0,97`, `a_(a2) = a cos varphi_2 = cos 30^@ ~~ 0,87`.

    Далее по теореме синусов , `a_1/(sin varphi_2)  = a/(sin (180^@ - varphi_1 - varphi_2))`,

    откуда  `a_1 = (sin varphi_2)/(sin (varphi_1 + varphi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`

    и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.

    3. Проектирование вектора на оси координат. 

    Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j`  назовём единичными векторами.

    Перенесём  вектор `vec a` так,  чтобы его начало совпало с началом координат. Пусть  в  этом положении он изображается направленным отрезком `AO` (рис. 14).

    Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда  векторы `vec(a_x)` и `vec(a_y)` будут  составляющими  вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vecj`. Следовательно, существуют такие  числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:

    `vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`.                                                         (3)

    Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.

    Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).

    Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha` (рис.14). Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.

    В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.

    Зная проекции вектора `vec a` на оси координат, можно найти его вели­чину и направление по формулам:

    `a = sqrt( a_x^2 + a_y^2)`                                                                                 (4)

    и 

    `"tg"  alpha = (a_y)/(a_x)`                                                                                 (5)

    причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту при­надлежит значение `alpha`.

    4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c` (рис. 15).

    Проектируя все векторы на оси координат, получим очевидные равенства 

    `c_x = a_x + b_x`,  `c_y = a_y + b_y`,

    или

    `c_x = a cos alpha + b cos beta`,

    `c_y = a sin alpha + b sin beta`,

    т. е. по проекциям  векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.

  • §1. Определение вектора. Операции над векторами

    1. Основные определения

    Удивительно, но с векторными величинами разной природы (перемещением, скоростью, силой, импульсом и др.) можно работать в значительной мере единообразно - как с геометрическими объектами - геометрическими векторами, или просто векторами, хотя есть и нюансы (см. ниже).

    Определение

    Вектор пред­ставляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.

    Стрелка компаса - не вектор, т. к. для неё нет таких операций.

    Мы будем рассматривать векторы на плоскости и в соответствии со сложившейся традицией обозначать их латинскими буквами со стрелками наверху, например: `vec v`, `vec F`, `vec a`, `vec b` и т. п. Часто в целях экономии используют упрощённое обозначение - букву с чертой, например, `bar v` или `bar F`.

    Одну из граничных точек вектора называют его началом, а другую - концом. Направление вектора задаётся от начала к концу, причём на чертеже конец вектора отмечают стрелкой. Начало вектора называют также точкой его приложения. Если точка `A` является нача­лом вектора `vec a`, то мы будем говорить, что вектор `vec a` приложен в точке `A` (рис. 2).

    Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.

    Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.

    Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рис. 3 векторы `vec a`, `vec b` и `vec c` коллинеарны. 

    Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.

    На рис. 4 слева изображены неравные векторы `vec a` и `vec f`, `vec g` и `vec h`, а справа - равные векторы `vec p` и `vec q`. Точка приложения геометрического вектора `vec a` может быть выбрана произвольно. Мы не различаем двух равных векторов, имеющих разные точки приложения и получающихся один из другого параллельным переносом. В соответствии с этим векторы, изучаемые в геометрии, называют свободными (они определены с точностью до точки приложения).

    В физике точка приложения вектора иногда имеет  принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется  относительно другой со скоростью `vec v`, то какой точке  приписать эту скорость?  Всем точкам движущейся системы!

    2. Сложение двух векторов.

    Пусть даны два произвольных вектора `vec a` и `vec b` (рис. 5а). 

    Для нахождения их суммы нужно перенести вектор `vec b` параллельно самому себе так, чтобы его начало совпало с концом вектора `vec a`. Тогда вектор, проведённый из начала вектора `vec a` в конец перенесённого вектора `vec b`, и будет являться суммой `vec a` и `vec b`. На рис. 5б - это вектор `vec c`.

    Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать

    `vec c = vec a + vec b = vec b + vec a`.                                                 (1)

    Приведённое выше правило геометрического сложения векторов называется правилом треугольника.

    Сумма векторов может быть найдена и по правилу параллелограмма. В этом случае параллельным переносом нужно совместить начала векторов `vec a` и `vec b` и построить на них, как на сторонах,  параллелограмм. Тогда сумма `vec a` и `vec b` будет представлять собой диагональ этого параллелограмма, конкретно - суммой `vec a` и `vec b` будет вектор, начало которого совпадает с общим началом векторов `vec a` и `vec b` конец расположен в противоположной вершине параллелограмма, а длина равна длине указанной диагонали (рис. 5в).

    Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют  правило  треугольника. Поясним сказанное.

    3. Сложение трёх и более векторов. 

    Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d` (рис. 6). 

    Для этого  по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим  вектором  `vec d`. Тогда  полученный  вектор `vec f = vec c + vec d` и  будет представлять собой сумму  трёх  векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.

    Чтобы упростить процесс сложения трёх и более векторов, обычно не находят промежуточные суммы типа `vec c = vec a + vec b`, а применяют правило многоугольника: параллельными переносами из конца первого вектора откладывают второй, из конца второго - откладывают третий, из конца третьего  - четвёртый  и  т.  д. 

    Так,  на рис. 7 вектор  `vec g`  представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`,  найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.

    Замечание

    Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так,  например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).

    Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.

    Сила есть аддитивная векторная величина. Если к телу в точке (или к системе тел в разных точках!) приложены силы `vec(F_1)`, `vec(F_2)`, `vec(F_3)` и т. д., то сумма векторов сил `vec(F_1) + vec(F_2) + vec(F_3) + ...` есть осмысленная и даже очень нужная величина. Например, в условиях равновесия тела сумма всех приложенных к нему сил `vec(F_1) + vec(F_2) + vec(F_3) + ... = 0`, даже если силы приложены в разных точках тела. Причём это относится не только к твёрдым телам. Если нитка подвешена за два конца к двум гвоздям, а в промежутке перекинута еще через какие-нибудь гвозди, то сначала нужно найти силы со стороны каждого из гвоздей и  силу со стороны Земли (силу тяжести) `vec F_1`, `vec(F_2)`, `vec(F_3)`, `…`; при этом говорят, что к нитке приложена сумма сил `vec(F_1) + vec(F_2) + vec(F_3) + ...`; в условиях равновесия эта сумма будет равна нулю.

    Не так со скоростями. Если система состоит из двух частиц, имеющих в некоторый момент времени скорости `vec(v_1)` и `vec(v_2)`, то это не означает, что в этот момент вся система обладает скоростью равной векторной сумме `vec(v_1) + vec(v_2)`. Никто не запрещает складывать векторы скорости разных частиц; но с точки зрения физики вектор `vec(v_1) + vec(v_2)` ничему приписать нельзя. В этом смысле скорость - не аддитивная величина. Суммой скоростей (векторной суммой) интересуются, когда одно движение накладывается на другое (например, Земля вращается вокруг Солнца, но вместе с Солнцем движется вокруг центра Галактики). А вот сумма скоростей отдельных частиц системы (например, сумма скоростей звезд в Галактике) физического интереса не представляет.

    Родственная скорости величина, с которой вы еще не раз встретитесь в курсе физики, импульс материальной точки, равный произведению массы на скорость, `vec p = m vec v` снова - величина аддитивная.

    В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.

    4. Умножение вектора на скаляр. 

    Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k < 0`, а модуль `b` равен

     `b = |k| a`                                                                                (2)

    где `|k|` - абсолютная величина числа `k`. 

    Если два вектора коллинеарны, то они отличаются только скалярным множителем. Наоборот, если два вектора отличаются только ска­лярным множителем, не равным  нулю, то они коллинеарны.      

    В случае, когда `k = 0` или `vec a = 0`, произведение `k vec a` представляет собой нулевой  вектор,  направление которого не определено.

    Если `k = 1`, то согласно (2) `vec b = vec a` и векторы `vec a` и `vec b` равны (рис. 8а).

    При `k = - 1` получим `vec b = - vec a`. Вектор `- vec a` имеет модуль, равный модулю вектора `vec a`, но направлен в противоположную сторону (рис. 8б).

    Два  вектора,  противоположно  направленные и имеющие  равные длины, называются противоположными.

    Импульс тела `vec p = m vec v` коллинеарен вектору скорости и направлен с ней в одну сторону, т. к. массы всех тел положительны. Чуть ранее говорилось об аддитивности импульса. Если система состоит из материальных точек с массами `m_1`, `m_2`, `m_3`, `...`, которые в некоторый момент времени имели скорости `vec(v_1)`, `vec(v_2)`, `vec(v_3)`, `…`, т. е. имели импульсы `vec(p_1) = m_1 vec(v_1)`, `vec(p_2) = m_2 vec(v_2)`, `vec(p_3) = m_3 vec(v_3)`, `…`, то вся система в этот момент обладает импульсом  

    `vec p = vec(p_1) + vec(p_2) + vec(p_3) + ... = m_1 vec(v_1) + m_2 vec(v_2) + m_3 vec(v_3) + ...`.

    При этом каждое из слагаемых здесь должно быть найдено по правилу умножения вектора (скорости данной частицы) на скаляр (её массу), а затем все эти векторы должны быть сложены, например, по правилу многоугольника.

    Вычесть из вектора `vec a` вектор `vec b` означает прибавить к вектору `vec a` вектор   `- vec b`:

    `vec a - vec b = vec a + (- vec b)`


  • Введение

    Традиционно курс физики начинается с изучения механического движения, которое определяют как изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Уже описание движения простейшего объекта - материальной точки (тела, размерами которого в данной задаче можно пренебречь) - требует введения векторных величин: радиус-вектора `vec r (t)` (характеризующего положение точки в пространстве в каждый момент времени `t`), вектора перемещения `Delta vec r` (рис. 1), скорости и др.

    Рис. 1


    Что же такое векторная величина? Напомним, что некоторые физические величины полностью характе­ризуются единственным числом, которое выражает отношение этой величины к единице измерения. Такие величины называются скалярными. Простейшие примеры их - масса, плотность, температура. Так, температура в Москве `25^@ "C"` полностью задана одним числом (`25^@ "C"`); нельзя, например, сказать, что она направлена под каким-то углом к горизонту, температура никуда не направлена. То же самое относится к массе тела (но не к силе тяжести!), плотности вещества.


    С другой стороны, для характеристи­ки таких физических величин, как перемещение, скорость, сила, необходимо также знать и их направление. Такие величины называются векторными. Они являются предметом изучения специального раздела математики, называемого векторной алгеброй.

  • Введение

    Часть механики, изучающая условия, при которых тело находится в покое под действием нескольких сил, называется статикой

    В гидростатике рассматриваются силы, возникающие в системе, состоящей из покоящейся жидкости и помещённых в эту жидкость неподвижных тел.

    Силы, появляющиеся в системе из неподвижного газа и помещённых в него покоящихся тел, изучает наука аэростатика.

    В гидростатике и аэростатике используются многие понятия и законы механики и её составной части – статики. Поэтому перед чтением этого задания полезно повторить материал, касающийся понятий массы, плотности, силы, силы тяжести, веса тела, равнодействующей нескольких сил. Напомним кое-что из этого.

    Масса тела `m`, его объём `V` и плотность `rho` тела связаны формулой `m=Vrho`. Сила тяжести, действующая на тело массой `m`, приложена к телу и находится по формуле `F=mg`, где `g~~9,8  "Н"//"кг"=9,8  "м"//"с"^2`  – ускорение свободного падения. Вес тела массой `m` во многих случаях выражается тоже аналогичной формулой `Q=mg`, но вес `Q` приложен к подставке, на которой находится тело.

    Сила, которая оказывает на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил. Если тело находится в покое, то равнодействующая сила равна нулю. В частности, если на тело действуют две силы и тело находится при этом в покое, то эти силы равны по модулю и противоположны по направлению.

    Несколько слов о контрольных вопросах и задачах, предлагаемых в конце задания. Часть вопросов и задач простые, часть сложные. Не смущайтесь, если некоторые из них Вам не удастся решить. У Вас будет возможность вернуться к этому заданию, когда Вы получите назад свою проверенную работу и официальное решение этого задания.

    Желаем удачи!

  • Список литературы
    1. Черноуцан А.И. Краткий курс физики Под ред. А.А. Леоновича. – М.: ФИЗМАТЛИТ, 2009. – 224 с.
    2. Козел С.М. Физика. 10-11 классы: пособие для учащихся и абитуриентов. В 2 ч. Ч.2. / С.М. Козел – М.: Мнемозина, 2010. – 400 с.
  • §6. Ядерная физика
    Протонно-нейтронное строение атомных ядер. Изотопы.

    По современным представлениям ядра атомов состоят из положительно заряженных протонов и электрически нейтральных нейтронов, массы каждого из которых примерно равны друг другу и значительно превосходят массу электрона (в 1836  и  1839  раз  соответственно). Ввиду близости масс протона и нейтрона, `m_p~~m_n~~1,67*10^(-27)` кг, их объединяют общим названием «нуклон» (от английского слова nuclei – ядро). Соотношение между числом протонов `Z` и числом `(A-Z)` нейтронов в ядре XZA{}_Z^AX, где `A` – общее число нуклонов в ядре (массовое число) данного химического элемента `X`, может варьироваться в некоторых (не слишком широких) пределах.

    Атомы, ядра которых содержат одинаковое число протонов (а потому и одинаковое число электронов), но разное число нейтронов, называют изотопами химического элемента. Например, ядра изотопов углерода C612{}_6^{12}\mathrm C и C614{}_6^{14}\mathrm C содержат одинаковое число протонов `Z=6`, но разное число нейтронов: `12-6=6` и `14-6=8` соответственно. Ядра C612{}_6^{12}\mathrm C стабильны, ядра C614{}_6^{14}\mathrm C нестабильны (радиоактивны). Другой пример: известны `3` изотопа водорода – H1{}^1\mathrm H, H2=D{}^2\mathrm H=\mathrm D (дейтерий, его ядро называется дейтроном)  и H3=T{}^3\mathrm H=\mathrm T (тритий, его ядро называется тритоном). Дейтрон состоит из протона и нейтрона, тритон – из протона и двух нейтронов. Первые два изотопа водорода стабильны, 3-й нестабилен. Конкретные ядра атомов веществ называют нуклидами; ядра радиоактивных изотопов – радионуклидами.

    Размеры ядер

    Радиус атомного ядра  с массовым числом `A` можно оценить по формуле `R=1,3A^(1//3)*10^(-15)` м. Между протонами в ядре существует сильное электростатическое отталкивание. Удерживают их вместе в малом объёме ядра так называемые ядерные силы.

    Превращения ядер

    Кроме довольно многочисленных стабильных ядер, в природе существует большое число (а ещё больше получено искусственно) нестабильных ядер, которые самопроизвольно превращаются в другие ядра (говорят: распадаются).

    `alpha`-распад ядер. При `alpha`-распаде исходное материнское ядро испускает ядро гелия He4{}^4\mathrm{He} (`alpha`-частицу) и превращается в дочернее ядро, числа протонов и нейтронов у которого уменьшаются на две единицы каждое. Спонтанному (без внешнего воздействия) `alpha`-распаду подвержены тяжёлые ядра с `Z >83` и небольшая группа редкоземельных элементов в области `A=140-160`.

    `beta`-распад ядер – процесс самопроизвольного превращения ядра в ядро с тем же значением `A`, но с изменением `Z` на `DeltaZ=+-1` за счёт испускания электрона (или позитрона – частицы, отличающейся от электрона лишь знаком электрического заряда) или захвата электрона с атомной оболочки.

    Деление ядер характерно только для самых тяжёлых ядер, начиная от тория `(Z=90)` и далее в сторону больших `Z`. Впервые деление ядер наблюдали и дали правильную трактовку эксперименту Ган и Штрассман (1938). Опыты были проведены с ядрами урана `(Z=92)`, которые бомбардировались медленными нейтронами. В результате образовывалась пара ядер с примерно равными массами, а в качестве «мелких брызг» вылетали два-три нейтрона. Последние имеют достаточно большие энергии и чаще всего не вызывают деления соседних ядер урана (подчеркнём: лучше всего деление урана происходит под действием медленных, а не быстрых нейтронов). Однако, если эти «два-три нейтрона» замедлить, они уже легко вызывают деление других ядер. Так возникает цепная реакция деления.

    Термоядерный синтез лёгких элементов.  При высоких температурах (порядка `10^7` K) возможны реакции слияния легких ядер с образованием более тяжёлых ядер. Высокие температуры необходимы, потому что все ядра заряжены положительно, и для сближения ядер требуется преодолевать силы электростатического отталкивания ядер друг от друга. В термоядерных реакциях происходит значительное выделение энергии, с избытком компенсируя её начальные затраты (получение высоких температур).

    Энергия связи

    По определению энергией связи `E_"св"` называют минимальную энергию, которую нужно сообщить ядру, чтобы полностью расщепить его на составляющие это ядро `Z` протонов и `N=A-Z` нейтронов. Она равна разности

    `E_"св"(Z,A)=(Zm_p+Nm_n-M_"ядра"(Z,A))c^2`

    Закон радиоактивного распада.

    Ядра радиоактивных изотопов элементов самопроизвольно распадаются с превращением в ядра изотопов других элементов. (Например, ядра изотопа углерода C614{}_6^{14}\mathrm C в результате `beta`-распада превращаются в ядра изотопа азота N714{}_7^{14}\mathrm N.) Первые из них называют материнскими (или родительскими) ядрами, а ядра вторых – дочерними. 

    В результате самопроизвольных распадов радиоизотопа число `N(t)` его ещё не распавшихся ядер с течением времени непрерывно уменьшается. Изменение числа не распавшихся ядер за малое время `dt` пропорционально числу этих не распавшихся ядер

                           `dN=-lambdaNdt`,                                                                          (6.1)

    где `lambda` – постоянная распада размерности `1`/с. Решая уравнение (6.1), находим зависимость числа не распавшихся ядер от времени:

                             `N(t)=N_0e^(-lambdat)`,                                                                  (6.2)

    где `N_0` – число ядер в начальный момент времени `t=0`. Если значения `N_0` и `lambda` известны, то по измеренному значению `N(t)` можно найти время, в течение которого происходил распад:

                         `t=1/lambda ln(N_0/(N(t)))`.                                                                (6.3)

    На этом основан метод определения «возраста» пород в геологии и «возраста», например, артефактов (продуктов деятельности человека) в археологии. Использование этого метода предполагает, что ни материнские, ни дочерние ядра не исчезают и не появляются иначе как в результате самого радиоактивного процесса.

    Величину `tau=1/lambda` называют средним временем жизни радиоактивного ядра. Удобной характеристикой радиоактивного распада является период полураспада. Так называют время `T` (в литературе чаще используется более громоздкое обозначение `T_(1//2)`), в течение которого количество не распавшихся ядер уменьшается вдвое:  `N(T)=N_0//2`, т. е. `N_0e^(-lambdat)=N_0//2`, откуда, логарифмируя, получаем соотношение между константой распада и периодом полураспада

                 `T=(ln2)/lambda~~(0,693)/lambda`.                                                       (6.4)

    Пользуясь понятием периода полураспада, закон радиоактивного распада можно представить в виде

         `N(t)=N_0*2^(-t//T)`.                                                        (6.2')

    Активностью радиоизотопа называют величину

                    `A=-dN//dt`,                                                                  (6.5)

    определяющую интенсивность распадов (число распадов в единицу времени). С учётом (6.1) и (6.2) находим

    `A=lambdaN=lambdaN_0e^(-lambdat)=A_0e^(-lambdat)`,                                        (6.6)

    т. е., не только число не распавшихся ядер, но и их активность экспоненциально убывает со временем, где

                                                   `A_0=lambdaN_0`                                                                            (6.7)

    `A_0` – активность в начальный момент времени  `t=0`.

    Для определения времени `t` в методах датирования кроме формулы (6.3) может быть использована формула

                                  `t=1/lambda ln(A_0/(A(t)))`,                                                         (6.8)

    при этом экспериментально измеряются активности `A_0` и `A(t)`. Последнее время отдают предпочтение прямому измерению `N(t)` и формуле (6.3) (как методу более точному и требующему меньших затрат времени).

    Пример 6.1

    В цепочке радиоактивных превращений после `5` бета-распадов и нескольких альфа-распадов ядро тяжёлого элемента превращается в ядро устойчивого атома, порядковый номер которого на `13` меньше первоначального. На сколько меньше первоначального становится массовое число ядра?

    Решение

    Пусть `N_alpha` и `N_beta` – числа `alpha`- и `beta`- распадов в цепочке. Тогда изменение зарядового числа ядра (порядкового номера элемента) `DeltaZ=-2N_alpha+N_beta=-2N_alpha+5=-13`, откуда находим `N_alpha=9`. Изменение массового числа `DeltaA=-4N_alpha=-36`.

    Пример 6.2

    Период полураспада радиоактивного изотопа йода I53131{}_{53}^{131}\mathrm I составляет `T=8` суток. За какое время `t` число ядер этого изотопа уменьшится в `100` раз?

    Решение

    По формуле (6.2')  `2^(-t//T)=1//100`, откуда `t=T log_2 100~~53` сут.

    Пример 6.3

    При прохождении потока нейтронов через пластинку свинца толщиной `d_1=1`мм количество частиц уменьшилось на `eta=15%`. Найти долю `delta` нейтронов, проходящих через пластинку свинца толщиной `d_2=10` мм.

    Решение

    Доля частиц, прошедших пластинку `d_1`, составляет `1-eta=0,85`. Если за первой пластинкой поставить точно такую же вторую, то через неё пройдёт `85%` от прошедших первую пластинку, т. е. `(1-eta)^2~~0,72` `(72%)` от начального числа нейтронов. Если поставить одну за другой `10` пластинок `d_1` `(d_2=10d_1)`, то через них пройдёт `(1-eta)^(10)=(0,85)^(10)~~0,20` `(20%)` от числа частиц в исходном потоке.

    Пример 6.4

    Мощность реактора постоянна и равна `P=1` МВт. За какое время первоначальная масса `m_0=10` кг урана U92235{}_{92}^{235}\mathrm U уменьшится на `2%`? В одном акте деления высвобождается энергия `W~~190` МэВ. Постоянная Авогадро `N_A~~6*10^(23)  "моль"^(-1)`,  `1` эВ `=1,6*10^(-19)` Дж.

    Решение

    Энергия, полученная в реакторе за время `t`, равная `P*t`, может быть выражена через энергию, высвобождаемую в одном акте деления `W` и число `N` распавшихся за это время ядер урана U92235:{}_{92}^{235}\mathrm U: `P*t=W*N`. Последнее число связано с уменьшением на `|Deltam|=0,02m_0` первоначальной массы урана `m_0` и массой одного атома урана `m_1=mu//N_A`, где `mu=235*10^(-3)` кг/моль – молярная масса урана `-235`,  `N_A=6,02*10^(23)` `1`/моль - число Авогадро: `N=(|Deltam|)/m_1~~5,12*10^(23)`. В итоге

    `t=(W*N)/P=(5,12*10^(23)*190*10^6*1,6*10^(-19))/(10^6)=1,56*10^7  "c"~~180`суток`~~0,5`года.

    Пример 6.5

    Сколько энергии выделяется в реакции H12+H13=He24+n01{}_1^2\mathrm H+{}_1^3\mathrm H={}_2^4\mathrm{He}+{}_0^1\mathrm n? Массы частиц равны: дейтерия `= 2,01410` а.е.м., трития `=3,01605` а.е.м., гелия-`4` `=4,00260` а.е.м., нейтрона `1,00866` а.е.м., `1` а.е.м.`*c^2=931,50` МэВ.

    Решение

    Выделившаяся энергия равна

    `E=(2,01410+3,01605-4,00260-1,00866)*931,50` МэВ `=17,6` МэВ.

    Пример 6.6

    Термоядерная реакция H12+H13=He24+n01{}_1^2\mathrm H+{}_1^3\mathrm H={}_2^4\mathrm{He}+{}_0^1\mathrm n идёт с выделением энергии `Q=17,6` МэВ.  Найти распределение энергии между продуктами реакции. Кинетическими энергиями дейтерия и трития до реакции пренебречь (по сравнению с выделившейся энергией). Считать, что масса протона примерно равна массе нейтрона `m_n~~m_p`,  а масса ядра гелия `M~~4m_"p"`.

    Решение

    Выделившаяся энергия порядка `10^7` эВ значительно меньше энергии покоя частиц (последняя порядка `m_"p"c^2~~10^9` эВ, т. е. на `2` порядка больше). Это позволяет вести рассмотрение в рамках нерелятивистской механики Ньютона.

    Запишем для реакции  закон сохранения импульса в системе отсчёта, в которой до реакции суммарный импульс равнялся нулю, `0=4m u+m upsilon` (*) и выражение для кинетической энергии продуктов распада `(4m u^2)/2+(m upsilon^2)/2=Q` (**). Решая систему уравнений (*) и (**), находим `(4m u^2)/2=1/5 Q~~3,5` МэВ и `(m upsilon^2)/2=4/5 Q~~14,1` МэВ, т. е. `80%` энергии уносится более лёгкой частицей.